procfs_core::process

Enum ClearRefs

source
pub enum ClearRefs {
    PGReferencedAll = 1,
    PGReferencedAnonymous = 2,
    PGReferencedFile = 3,
    SoftDirty = 4,
    PeakRSS = 5,
}
Expand description

Clearing the PG_Referenced and ACCESSED/YOUNG bits provides a method to measure approximately how much memory a process is using. One first inspects the values in the “Referenced” fields for the VMAs shown in /proc/[pid]/smaps to get an idea of the memory footprint of the process. One then clears the PG_Referenced and ACCESSED/YOUNG bits and, after some measured time interval, once again inspects the values in the “Referenced” fields to get an idea of the change in memory footprint of the process during the measured interval. If one is interested only in inspecting the selected mapping types, then the value 2 or 3 can be used instead of 1.

The /proc/[pid]/clear_refs file is present only if the CONFIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

Only writable by the owner of the process

See procfs::Process::clear_refs() and procfs::Process::pagemap()

Variants§

§

PGReferencedAll = 1

(since Linux 2.6.22)

Reset the PG_Referenced and ACCESSED/YOUNG bits for all the pages associated with the process. (Before kernel 2.6.32, writing any nonzero value to this file had this effect.)

§

PGReferencedAnonymous = 2

(since Linux 2.6.32)

Reset the PG_Referenced and ACCESSED/YOUNG bits for all anonymous pages associated with the process.

§

PGReferencedFile = 3

(since Linux 2.6.32)

Reset the PG_Referenced and ACCESSED/YOUNG bits for all file-mapped pages associated with the process.

§

SoftDirty = 4

(since Linux 3.11)

Clear the soft-dirty bit for all the pages associated with the process. This is used (in conjunction with /proc/[pid]/pagemap) by the check- point restore system to discover which pages of a process have been dirtied since the file /proc/[pid]/clear_refs was written to.

§

PeakRSS = 5

(since Linux 4.0)

Reset the peak resident set size (“high water mark”) to the process’s current resident set size value.

Trait Implementations§

source§

impl Clone for ClearRefs

source§

fn clone(&self) -> ClearRefs

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ClearRefs

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Display for ClearRefs

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl FromStr for ClearRefs

source§

type Err = &'static str

The associated error which can be returned from parsing.
source§

fn from_str(s: &str) -> Result<Self, Self::Err>

Parses a string s to return a value of this type. Read more
source§

impl Hash for ClearRefs

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl PartialEq for ClearRefs

source§

fn eq(&self, other: &ClearRefs) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Copy for ClearRefs

source§

impl Eq for ClearRefs

source§

impl StructuralPartialEq for ClearRefs

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

source§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.