1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
use std::{
    cmp,
    collections::VecDeque,
    convert::TryFrom,
    fmt, io, mem,
    net::{IpAddr, SocketAddr},
    sync::Arc,
    time::{Duration, Instant},
};

use bytes::{Bytes, BytesMut};
use frame::StreamMetaVec;
use rand::{rngs::StdRng, Rng, SeedableRng};
use thiserror::Error;
use tracing::{debug, error, trace, trace_span, warn};

use crate::{
    cid_generator::ConnectionIdGenerator,
    cid_queue::CidQueue,
    coding::BufMutExt,
    config::{ServerConfig, TransportConfig},
    crypto::{self, KeyPair, Keys, PacketKey},
    frame,
    frame::{Close, Datagram, FrameStruct},
    packet::{
        FixedLengthConnectionIdParser, Header, InitialHeader, InitialPacket, LongType, Packet,
        PacketNumber, PartialDecode, SpaceId,
    },
    range_set::ArrayRangeSet,
    shared::{
        ConnectionEvent, ConnectionEventInner, ConnectionId, DatagramConnectionEvent, EcnCodepoint,
        EndpointEvent, EndpointEventInner,
    },
    token::ResetToken,
    transport_parameters::TransportParameters,
    Dir, EndpointConfig, Frame, Side, StreamId, Transmit, TransportError, TransportErrorCode,
    VarInt, MAX_STREAM_COUNT, MIN_INITIAL_SIZE, TIMER_GRANULARITY,
};

mod ack_frequency;
use ack_frequency::AckFrequencyState;

mod assembler;
pub use assembler::Chunk;

mod cid_state;
use cid_state::CidState;

mod datagrams;
use datagrams::DatagramState;
pub use datagrams::{Datagrams, SendDatagramError};

mod mtud;
mod pacing;

mod packet_builder;
use packet_builder::PacketBuilder;

mod packet_crypto;
use packet_crypto::{PrevCrypto, ZeroRttCrypto};

mod paths;
pub use paths::RttEstimator;
use paths::{PathData, PathResponses};

mod send_buffer;

mod spaces;
#[cfg(fuzzing)]
pub use spaces::Retransmits;
#[cfg(not(fuzzing))]
use spaces::Retransmits;
use spaces::{PacketNumberFilter, PacketSpace, SendableFrames, SentPacket, ThinRetransmits};

mod stats;
pub use stats::{ConnectionStats, FrameStats, PathStats, UdpStats};

mod streams;
#[cfg(fuzzing)]
pub use streams::StreamsState;
#[cfg(not(fuzzing))]
use streams::StreamsState;
pub use streams::{
    BytesSource, Chunks, ClosedStream, FinishError, ReadError, ReadableError, RecvStream,
    SendStream, StreamEvent, Streams, WriteError, Written,
};

mod timer;
use crate::congestion::Controller;
use timer::{Timer, TimerTable};

/// Protocol state and logic for a single QUIC connection
///
/// Objects of this type receive [`ConnectionEvent`]s and emit [`EndpointEvent`]s and application
/// [`Event`]s to make progress. To handle timeouts, a `Connection` returns timer updates and
/// expects timeouts through various methods. A number of simple getter methods are exposed
/// to allow callers to inspect some of the connection state.
///
/// `Connection` has roughly 4 types of methods:
///
/// - A. Simple getters, taking `&self`
/// - B. Handlers for incoming events from the network or system, named `handle_*`.
/// - C. State machine mutators, for incoming commands from the application. For convenience we
///   refer to this as "performing I/O" below, however as per the design of this library none of the
///   functions actually perform system-level I/O. For example, [`read`](RecvStream::read) and
///   [`write`](SendStream::write), but also things like [`reset`](SendStream::reset).
/// - D. Polling functions for outgoing events or actions for the caller to
///   take, named `poll_*`.
///
/// The simplest way to use this API correctly is to call (B) and (C) whenever
/// appropriate, then after each of those calls, as soon as feasible call all
/// polling methods (D) and deal with their outputs appropriately, e.g. by
/// passing it to the application or by making a system-level I/O call. You
/// should call the polling functions in this order:
///
/// 1. [`poll_transmit`](Self::poll_transmit)
/// 2. [`poll_timeout`](Self::poll_timeout)
/// 3. [`poll_endpoint_events`](Self::poll_endpoint_events)
/// 4. [`poll`](Self::poll)
///
/// Currently the only actual dependency is from (2) to (1), however additional
/// dependencies may be added in future, so the above order is recommended.
///
/// (A) may be called whenever desired.
///
/// Care should be made to ensure that the input events represent monotonically
/// increasing time. Specifically, calling [`handle_timeout`](Self::handle_timeout)
/// with events of the same [`Instant`] may be interleaved in any order with a
/// call to [`handle_event`](Self::handle_event) at that same instant; however
/// events or timeouts with different instants must not be interleaved.
pub struct Connection {
    endpoint_config: Arc<EndpointConfig>,
    server_config: Option<Arc<ServerConfig>>,
    config: Arc<TransportConfig>,
    rng: StdRng,
    crypto: Box<dyn crypto::Session>,
    /// The CID we initially chose, for use during the handshake
    handshake_cid: ConnectionId,
    /// The CID the peer initially chose, for use during the handshake
    rem_handshake_cid: ConnectionId,
    /// The "real" local IP address which was was used to receive the initial packet.
    /// This is only populated for the server case, and if known
    local_ip: Option<IpAddr>,
    path: PathData,
    /// Whether MTU detection is supported in this environment
    allow_mtud: bool,
    prev_path: Option<(ConnectionId, PathData)>,
    state: State,
    side: Side,
    /// Whether or not 0-RTT was enabled during the handshake. Does not imply acceptance.
    zero_rtt_enabled: bool,
    /// Set if 0-RTT is supported, then cleared when no longer needed.
    zero_rtt_crypto: Option<ZeroRttCrypto>,
    key_phase: bool,
    /// How many packets are in the current key phase. Used only for `Data` space.
    key_phase_size: u64,
    /// Transport parameters set by the peer
    peer_params: TransportParameters,
    /// Source ConnectionId of the first packet received from the peer
    orig_rem_cid: ConnectionId,
    /// Destination ConnectionId sent by the client on the first Initial
    initial_dst_cid: ConnectionId,
    /// The value that the server included in the Source Connection ID field of a Retry packet, if
    /// one was received
    retry_src_cid: Option<ConnectionId>,
    /// Total number of outgoing packets that have been deemed lost
    lost_packets: u64,
    events: VecDeque<Event>,
    endpoint_events: VecDeque<EndpointEventInner>,
    /// Whether the spin bit is in use for this connection
    spin_enabled: bool,
    /// Outgoing spin bit state
    spin: bool,
    /// Packet number spaces: initial, handshake, 1-RTT
    spaces: [PacketSpace; 3],
    /// Highest usable packet number space
    highest_space: SpaceId,
    /// 1-RTT keys used prior to a key update
    prev_crypto: Option<PrevCrypto>,
    /// 1-RTT keys to be used for the next key update
    ///
    /// These are generated in advance to prevent timing attacks and/or DoS by third-party attackers
    /// spoofing key updates.
    next_crypto: Option<KeyPair<Box<dyn PacketKey>>>,
    accepted_0rtt: bool,
    /// Whether the idle timer should be reset the next time an ack-eliciting packet is transmitted.
    permit_idle_reset: bool,
    /// Negotiated idle timeout
    idle_timeout: Option<VarInt>,
    timers: TimerTable,
    /// Number of packets received which could not be authenticated
    authentication_failures: u64,
    /// Why the connection was lost, if it has been
    error: Option<ConnectionError>,
    /// Sent in every outgoing Initial packet. Always empty for servers and after Initial keys are
    /// discarded.
    retry_token: Bytes,
    /// Identifies Data-space packet numbers to skip. Not used in earlier spaces.
    packet_number_filter: PacketNumberFilter,

    //
    // Queued non-retransmittable 1-RTT data
    //
    /// Responses to PATH_CHALLENGE frames
    path_responses: PathResponses,
    close: bool,

    //
    // ACK frequency
    //
    ack_frequency: AckFrequencyState,

    //
    // Loss Detection
    //
    /// The number of times a PTO has been sent without receiving an ack.
    pto_count: u32,

    //
    // Congestion Control
    //
    /// Whether the most recently received packet had an ECN codepoint set
    receiving_ecn: bool,
    /// Number of packets authenticated
    total_authed_packets: u64,
    /// Whether the last `poll_transmit` call yielded no data because there was
    /// no outgoing application data.
    app_limited: bool,

    streams: StreamsState,
    /// Surplus remote CIDs for future use on new paths
    rem_cids: CidQueue,
    // Attributes of CIDs generated by local peer
    local_cid_state: CidState,
    /// State of the unreliable datagram extension
    datagrams: DatagramState,
    /// Connection level statistics
    stats: ConnectionStats,
    /// QUIC version used for the connection.
    version: u32,
}

impl Connection {
    pub(crate) fn new(
        endpoint_config: Arc<EndpointConfig>,
        server_config: Option<Arc<ServerConfig>>,
        config: Arc<TransportConfig>,
        init_cid: ConnectionId,
        loc_cid: ConnectionId,
        rem_cid: ConnectionId,
        pref_addr_cid: Option<ConnectionId>,
        remote: SocketAddr,
        local_ip: Option<IpAddr>,
        crypto: Box<dyn crypto::Session>,
        cid_gen: &dyn ConnectionIdGenerator,
        now: Instant,
        version: u32,
        allow_mtud: bool,
        rng_seed: [u8; 32],
        path_validated: bool,
    ) -> Self {
        let side = if server_config.is_some() {
            Side::Server
        } else {
            Side::Client
        };
        let initial_space = PacketSpace {
            crypto: Some(crypto.initial_keys(&init_cid, side)),
            ..PacketSpace::new(now)
        };
        let state = State::Handshake(state::Handshake {
            rem_cid_set: side.is_server(),
            expected_token: Bytes::new(),
            client_hello: None,
        });
        let mut rng = StdRng::from_seed(rng_seed);
        let mut this = Self {
            endpoint_config,
            server_config,
            crypto,
            handshake_cid: loc_cid,
            rem_handshake_cid: rem_cid,
            local_cid_state: CidState::new(
                cid_gen.cid_len(),
                cid_gen.cid_lifetime(),
                now,
                if pref_addr_cid.is_some() { 2 } else { 1 },
            ),
            path: PathData::new(remote, allow_mtud, None, now, path_validated, &config),
            allow_mtud,
            local_ip,
            prev_path: None,
            side,
            state,
            zero_rtt_enabled: false,
            zero_rtt_crypto: None,
            key_phase: false,
            // A small initial key phase size ensures peers that don't handle key updates correctly
            // fail sooner rather than later. It's okay for both peers to do this, as the first one
            // to perform an update will reset the other's key phase size in `update_keys`, and a
            // simultaneous key update by both is just like a regular key update with a really fast
            // response. Inspired by quic-go's similar behavior of performing the first key update
            // at the 100th short-header packet.
            key_phase_size: rng.gen_range(10..1000),
            peer_params: TransportParameters::default(),
            orig_rem_cid: rem_cid,
            initial_dst_cid: init_cid,
            retry_src_cid: None,
            lost_packets: 0,
            events: VecDeque::new(),
            endpoint_events: VecDeque::new(),
            spin_enabled: config.allow_spin && rng.gen_ratio(7, 8),
            spin: false,
            spaces: [initial_space, PacketSpace::new(now), PacketSpace::new(now)],
            highest_space: SpaceId::Initial,
            prev_crypto: None,
            next_crypto: None,
            accepted_0rtt: false,
            permit_idle_reset: true,
            idle_timeout: config.max_idle_timeout,
            timers: TimerTable::default(),
            authentication_failures: 0,
            error: None,
            retry_token: Bytes::new(),
            #[cfg(test)]
            packet_number_filter: match config.deterministic_packet_numbers {
                false => PacketNumberFilter::new(&mut rng),
                true => PacketNumberFilter::disabled(),
            },
            #[cfg(not(test))]
            packet_number_filter: PacketNumberFilter::new(&mut rng),

            path_responses: PathResponses::default(),
            close: false,

            ack_frequency: AckFrequencyState::new(get_max_ack_delay(
                &TransportParameters::default(),
            )),

            pto_count: 0,

            app_limited: false,
            receiving_ecn: false,
            total_authed_packets: 0,

            streams: StreamsState::new(
                side,
                config.max_concurrent_uni_streams,
                config.max_concurrent_bidi_streams,
                config.send_window,
                config.receive_window,
                config.stream_receive_window,
            ),
            datagrams: DatagramState::default(),
            config,
            rem_cids: CidQueue::new(rem_cid),
            rng,
            stats: ConnectionStats::default(),
            version,
        };
        if side.is_client() {
            // Kick off the connection
            this.write_crypto();
            this.init_0rtt();
        }
        this
    }

    /// Returns the next time at which `handle_timeout` should be called
    ///
    /// The value returned may change after:
    /// - the application performed some I/O on the connection
    /// - a call was made to `handle_event`
    /// - a call to `poll_transmit` returned `Some`
    /// - a call was made to `handle_timeout`
    #[must_use]
    pub fn poll_timeout(&mut self) -> Option<Instant> {
        self.timers.next_timeout()
    }

    /// Returns application-facing events
    ///
    /// Connections should be polled for events after:
    /// - a call was made to `handle_event`
    /// - a call was made to `handle_timeout`
    #[must_use]
    pub fn poll(&mut self) -> Option<Event> {
        if let Some(x) = self.events.pop_front() {
            return Some(x);
        }

        if let Some(event) = self.streams.poll() {
            return Some(Event::Stream(event));
        }

        if let Some(err) = self.error.take() {
            return Some(Event::ConnectionLost { reason: err });
        }

        None
    }

    /// Return endpoint-facing events
    #[must_use]
    pub fn poll_endpoint_events(&mut self) -> Option<EndpointEvent> {
        self.endpoint_events.pop_front().map(EndpointEvent)
    }

    /// Provide control over streams
    #[must_use]
    pub fn streams(&mut self) -> Streams<'_> {
        Streams {
            state: &mut self.streams,
            conn_state: &self.state,
        }
    }

    /// Provide control over streams
    #[must_use]
    pub fn recv_stream(&mut self, id: StreamId) -> RecvStream<'_> {
        assert!(id.dir() == Dir::Bi || id.initiator() != self.side);
        RecvStream {
            id,
            state: &mut self.streams,
            pending: &mut self.spaces[SpaceId::Data].pending,
        }
    }

    /// Provide control over streams
    #[must_use]
    pub fn send_stream(&mut self, id: StreamId) -> SendStream<'_> {
        assert!(id.dir() == Dir::Bi || id.initiator() == self.side);
        SendStream {
            id,
            state: &mut self.streams,
            pending: &mut self.spaces[SpaceId::Data].pending,
            conn_state: &self.state,
        }
    }

    /// Returns packets to transmit
    ///
    /// Connections should be polled for transmit after:
    /// - the application performed some I/O on the connection
    /// - a call was made to `handle_event`
    /// - a call was made to `handle_timeout`
    ///
    /// `max_datagrams` specifies how many datagrams can be returned inside a
    /// single Transmit using GSO. This must be at least 1.
    #[must_use]
    pub fn poll_transmit(
        &mut self,
        now: Instant,
        max_datagrams: usize,
        buf: &mut Vec<u8>,
    ) -> Option<Transmit> {
        assert!(max_datagrams != 0);
        let max_datagrams = match self.config.enable_segmentation_offload {
            false => 1,
            true => max_datagrams.min(MAX_TRANSMIT_SEGMENTS),
        };

        let mut num_datagrams = 0;
        // Position in `buf` of the first byte of the current UDP datagram. When coalescing QUIC
        // packets, this can be earlier than the start of the current QUIC packet.
        let mut datagram_start = 0;
        let mut segment_size = usize::from(self.path.current_mtu());

        // Send PATH_CHALLENGE for a previous path if necessary
        if let Some((prev_cid, ref mut prev_path)) = self.prev_path {
            if prev_path.challenge_pending {
                prev_path.challenge_pending = false;
                let token = prev_path
                    .challenge
                    .expect("previous path challenge pending without token");
                let destination = prev_path.remote;
                debug_assert_eq!(
                    self.highest_space,
                    SpaceId::Data,
                    "PATH_CHALLENGE queued without 1-RTT keys"
                );
                buf.reserve(MIN_INITIAL_SIZE as usize);

                let buf_capacity = buf.capacity();

                // Use the previous CID to avoid linking the new path with the previous path. We
                // don't bother accounting for possible retirement of that prev_cid because this is
                // sent once, immediately after migration, when the CID is known to be valid. Even
                // if a post-migration packet caused the CID to be retired, it's fair to pretend
                // this is sent first.
                let mut builder = PacketBuilder::new(
                    now,
                    SpaceId::Data,
                    prev_cid,
                    buf,
                    buf_capacity,
                    0,
                    false,
                    self,
                )?;
                trace!("validating previous path with PATH_CHALLENGE {:08x}", token);
                buf.write(frame::Type::PATH_CHALLENGE);
                buf.write(token);
                self.stats.frame_tx.path_challenge += 1;

                // An endpoint MUST expand datagrams that contain a PATH_CHALLENGE frame
                // to at least the smallest allowed maximum datagram size of 1200 bytes,
                // unless the anti-amplification limit for the path does not permit
                // sending a datagram of this size
                builder.pad_to(MIN_INITIAL_SIZE);

                builder.finish(self, buf);
                self.stats.udp_tx.on_sent(1, buf.len());
                return Some(Transmit {
                    destination,
                    size: buf.len(),
                    ecn: None,
                    segment_size: None,
                    src_ip: self.local_ip,
                });
            }
        }

        // If we need to send a probe, make sure we have something to send.
        for space in SpaceId::iter() {
            let request_immediate_ack =
                space == SpaceId::Data && self.peer_supports_ack_frequency();
            self.spaces[space].maybe_queue_probe(request_immediate_ack, &self.streams);
        }

        // Check whether we need to send a close message
        let close = match self.state {
            State::Drained => {
                self.app_limited = true;
                return None;
            }
            State::Draining | State::Closed(_) => {
                // self.close is only reset once the associated packet had been
                // encoded successfully
                if !self.close {
                    self.app_limited = true;
                    return None;
                }
                true
            }
            _ => false,
        };

        // Check whether we need to send an ACK_FREQUENCY frame
        if let Some(config) = &self.config.ack_frequency_config {
            self.spaces[SpaceId::Data].pending.ack_frequency = self
                .ack_frequency
                .should_send_ack_frequency(self.path.rtt.get(), config, &self.peer_params)
                && self.highest_space == SpaceId::Data
                && self.peer_supports_ack_frequency();
        }

        // Reserving capacity can provide more capacity than we asked for. However, we are not
        // allowed to write more than `segment_size`. Therefore the maximum capacity is tracked
        // separately.
        let mut buf_capacity = 0;

        let mut coalesce = true;
        let mut builder_storage: Option<PacketBuilder> = None;
        let mut sent_frames = None;
        let mut pad_datagram = false;
        let mut congestion_blocked = false;

        // Iterate over all spaces and find data to send
        let mut space_idx = 0;
        let spaces = [SpaceId::Initial, SpaceId::Handshake, SpaceId::Data];
        // This loop will potentially spend multiple iterations in the same `SpaceId`,
        // so we cannot trivially rewrite it to take advantage of `SpaceId::iter()`.
        while space_idx < spaces.len() {
            let space_id = spaces[space_idx];
            // Number of bytes available for frames if this is a 1-RTT packet. We're guaranteed to
            // be able to send an individual frame at least this large in the next 1-RTT
            // packet. This could be generalized to support every space, but it's only needed to
            // handle large fixed-size frames, which only exist in 1-RTT (application datagrams). We
            // don't account for coalesced packets potentially occupying space because frames can
            // always spill into the next datagram.
            let pn = self.packet_number_filter.peek(&self.spaces[SpaceId::Data]);
            let frame_space_1rtt =
                segment_size.saturating_sub(self.predict_1rtt_overhead(Some(pn)));

            // Is there data or a close message to send in this space?
            let can_send = self.space_can_send(space_id, frame_space_1rtt);
            if can_send.is_empty() && (!close || self.spaces[space_id].crypto.is_none()) {
                space_idx += 1;
                continue;
            }

            let mut ack_eliciting = !self.spaces[space_id].pending.is_empty(&self.streams)
                || self.spaces[space_id].ping_pending
                || self.spaces[space_id].immediate_ack_pending;
            if space_id == SpaceId::Data {
                ack_eliciting |= self.can_send_1rtt(frame_space_1rtt);
            }

            // Can we append more data into the current buffer?
            // It is not safe to assume that `buf.len()` is the end of the data,
            // since the last packet might not have been finished.
            let buf_end = if let Some(builder) = &builder_storage {
                buf.len().max(builder.min_size) + builder.tag_len
            } else {
                buf.len()
            };

            if !coalesce || buf_capacity - buf_end < MIN_PACKET_SPACE {
                // We need to send 1 more datagram and extend the buffer for that.

                // Is 1 more datagram allowed?
                if buf_capacity >= segment_size * max_datagrams {
                    // No more datagrams allowed
                    break;
                }

                // Anti-amplification is only based on `total_sent`, which gets
                // updated at the end of this method. Therefore we pass the amount
                // of bytes for datagrams that are already created, as well as 1 byte
                // for starting another datagram. If there is any anti-amplification
                // budget left, we always allow a full MTU to be sent
                // (see https://github.com/quinn-rs/quinn/issues/1082)
                if self
                    .path
                    .anti_amplification_blocked(segment_size as u64 * num_datagrams + 1)
                {
                    trace!("blocked by anti-amplification");
                    break;
                }

                // Congestion control and pacing checks
                // Tail loss probes must not be blocked by congestion, or a deadlock could arise
                if ack_eliciting && self.spaces[space_id].loss_probes == 0 {
                    // Assume the current packet will get padded to fill the segment
                    let untracked_bytes = if let Some(builder) = &builder_storage {
                        buf_capacity - builder.partial_encode.start
                    } else {
                        0
                    } as u64;
                    debug_assert!(untracked_bytes <= segment_size as u64);

                    let bytes_to_send = segment_size as u64 + untracked_bytes;
                    if self.path.in_flight.bytes + bytes_to_send >= self.path.congestion.window() {
                        space_idx += 1;
                        congestion_blocked = true;
                        // We continue instead of breaking here in order to avoid
                        // blocking loss probes queued for higher spaces.
                        trace!("blocked by congestion control");
                        continue;
                    }

                    // Check whether the next datagram is blocked by pacing
                    let smoothed_rtt = self.path.rtt.get();
                    if let Some(delay) = self.path.pacing.delay(
                        smoothed_rtt,
                        bytes_to_send,
                        self.path.current_mtu(),
                        self.path.congestion.window(),
                        now,
                    ) {
                        self.timers.set(Timer::Pacing, delay);
                        congestion_blocked = true;
                        // Loss probes should be subject to pacing, even though
                        // they are not congestion controlled.
                        trace!("blocked by pacing");
                        break;
                    }
                }

                // Finish current packet
                if let Some(mut builder) = builder_storage.take() {
                    if pad_datagram {
                        builder.pad_to(MIN_INITIAL_SIZE);
                    }

                    if num_datagrams > 1 {
                        // If too many padding bytes would be required to continue the GSO batch
                        // after this packet, end the GSO batch here. Ensures that fixed-size frames
                        // with heterogeneous sizes (e.g. application datagrams) won't inadvertently
                        // waste large amounts of bandwidth. The exact threshold is a bit arbitrary
                        // and might benefit from further tuning, though there's no universally
                        // optimal value.
                        const MAX_PADDING: usize = 16;
                        let packet_len_unpadded = cmp::max(builder.min_size, buf.len())
                            - datagram_start
                            + builder.tag_len;
                        if packet_len_unpadded + MAX_PADDING < segment_size {
                            trace!(
                                "GSO truncated by demand for {} padding bytes",
                                segment_size - packet_len_unpadded
                            );
                            builder_storage = Some(builder);
                            break;
                        }

                        // Pad the current packet to GSO segment size so it can be included in the
                        // GSO batch.
                        builder.pad_to(segment_size as u16);
                    }

                    builder.finish_and_track(now, self, sent_frames.take(), buf);

                    if num_datagrams == 1 {
                        // Set the segment size for this GSO batch to the size of the first UDP
                        // datagram in the batch. Larger data that cannot be fragmented
                        // (e.g. application datagrams) will be included in a future batch. When
                        // sending large enough volumes of data for GSO to be useful, we expect
                        // packet sizes to usually be consistent, e.g. populated by max-size STREAM
                        // frames or uniformly sized datagrams.
                        segment_size = buf.len();
                        // Clip the unused capacity out of the buffer so future packets don't
                        // overrun
                        buf_capacity = buf.len();

                        // Check whether the data we planned to send will fit in the reduced segment
                        // size. If not, bail out and leave it for the next GSO batch so we don't
                        // end up trying to send an empty packet. We can't easily compute the right
                        // segment size before the original call to `space_can_send`, because at
                        // that time we haven't determined whether we're going to coalesce with the
                        // first datagram or potentially pad it to `MIN_INITIAL_SIZE`.
                        if space_id == SpaceId::Data {
                            let frame_space_1rtt =
                                segment_size.saturating_sub(self.predict_1rtt_overhead(Some(pn)));
                            if self.space_can_send(space_id, frame_space_1rtt).is_empty() {
                                break;
                            }
                        }
                    }
                }

                // Allocate space for another datagram
                buf_capacity += segment_size;
                if buf.capacity() < buf_capacity {
                    // We reserve the maximum space for sending `max_datagrams` upfront
                    // to avoid any reallocations if more datagrams have to be appended later on.
                    // Benchmarks have shown shown a 5-10% throughput improvement
                    // compared to continuously resizing the datagram buffer.
                    // While this will lead to over-allocation for small transmits
                    // (e.g. purely containing ACKs), modern memory allocators
                    // (e.g. mimalloc and jemalloc) will pool certain allocation sizes
                    // and therefore this is still rather efficient.
                    buf.reserve(max_datagrams * segment_size);
                }
                num_datagrams += 1;
                coalesce = true;
                pad_datagram = false;
                datagram_start = buf.len();

                debug_assert_eq!(
                    datagram_start % segment_size,
                    0,
                    "datagrams in a GSO batch must be aligned to the segment size"
                );
            } else {
                // We can append/coalesce the next packet into the current
                // datagram.
                // Finish current packet without adding extra padding
                if let Some(builder) = builder_storage.take() {
                    builder.finish_and_track(now, self, sent_frames.take(), buf);
                }
            }

            debug_assert!(buf_capacity - buf.len() >= MIN_PACKET_SPACE);

            //
            // From here on, we've determined that a packet will definitely be sent.
            //

            if self.spaces[SpaceId::Initial].crypto.is_some()
                && space_id == SpaceId::Handshake
                && self.side.is_client()
            {
                // A client stops both sending and processing Initial packets when it
                // sends its first Handshake packet.
                self.discard_space(now, SpaceId::Initial);
            }
            if let Some(ref mut prev) = self.prev_crypto {
                prev.update_unacked = false;
            }

            debug_assert!(
                builder_storage.is_none() && sent_frames.is_none(),
                "Previous packet must have been finished"
            );

            // This should really be `builder.insert()`, but `Option::insert`
            // is not stable yet. Since we `debug_assert!(builder.is_none())` it
            // doesn't make any functional difference.
            let builder = builder_storage.get_or_insert(PacketBuilder::new(
                now,
                space_id,
                self.rem_cids.active(),
                buf,
                buf_capacity,
                datagram_start,
                ack_eliciting,
                self,
            )?);
            coalesce = coalesce && !builder.short_header;

            // https://tools.ietf.org/html/draft-ietf-quic-transport-34#section-14.1
            pad_datagram |=
                space_id == SpaceId::Initial && (self.side.is_client() || ack_eliciting);

            if close {
                trace!("sending CONNECTION_CLOSE");
                // Encode ACKs before the ConnectionClose message, to give the receiver
                // a better approximate on what data has been processed. This is
                // especially important with ack delay, since the peer might not
                // have gotten any other ACK for the data earlier on.
                if !self.spaces[space_id].pending_acks.ranges().is_empty() {
                    Self::populate_acks(
                        now,
                        self.receiving_ecn,
                        &mut SentFrames::default(),
                        &mut self.spaces[space_id],
                        buf,
                        &mut self.stats,
                    );
                }

                // Since there only 64 ACK frames there will always be enough space
                // to encode the ConnectionClose frame too. However we still have the
                // check here to prevent crashes if something changes.
                debug_assert!(
                    buf.len() + frame::ConnectionClose::SIZE_BOUND < builder.max_size,
                    "ACKs should leave space for ConnectionClose"
                );
                if buf.len() + frame::ConnectionClose::SIZE_BOUND < builder.max_size {
                    let max_frame_size = builder.max_size - buf.len();
                    match self.state {
                        State::Closed(state::Closed { ref reason }) => {
                            if space_id == SpaceId::Data || reason.is_transport_layer() {
                                reason.encode(buf, max_frame_size)
                            } else {
                                frame::ConnectionClose {
                                    error_code: TransportErrorCode::APPLICATION_ERROR,
                                    frame_type: None,
                                    reason: Bytes::new(),
                                }
                                .encode(buf, max_frame_size)
                            }
                        }
                        State::Draining => frame::ConnectionClose {
                            error_code: TransportErrorCode::NO_ERROR,
                            frame_type: None,
                            reason: Bytes::new(),
                        }
                        .encode(buf, max_frame_size),
                        _ => unreachable!(
                            "tried to make a close packet when the connection wasn't closed"
                        ),
                    }
                }
                if space_id == self.highest_space {
                    // Don't send another close packet
                    self.close = false;
                    // `CONNECTION_CLOSE` is the final packet
                    break;
                } else {
                    // Send a close frame in every possible space for robustness, per RFC9000
                    // "Immediate Close during the Handshake". Don't bother trying to send anything
                    // else.
                    space_idx += 1;
                    continue;
                }
            }

            // Send an off-path PATH_RESPONSE. Prioritized over on-path data to ensure that path
            // validation can occur while the link is saturated.
            if space_id == SpaceId::Data && num_datagrams == 1 {
                if let Some((token, remote)) = self.path_responses.pop_off_path(&self.path.remote) {
                    // `unwrap` guaranteed to succeed because `builder_storage` was populated just
                    // above.
                    let mut builder = builder_storage.take().unwrap();
                    trace!("PATH_RESPONSE {:08x} (off-path)", token);
                    buf.write(frame::Type::PATH_RESPONSE);
                    buf.write(token);
                    self.stats.frame_tx.path_response += 1;
                    builder.pad_to(MIN_INITIAL_SIZE);
                    builder.finish_and_track(
                        now,
                        self,
                        Some(SentFrames {
                            non_retransmits: true,
                            ..SentFrames::default()
                        }),
                        buf,
                    );
                    self.stats.udp_tx.on_sent(1, buf.len());
                    return Some(Transmit {
                        destination: remote,
                        size: buf.len(),
                        ecn: None,
                        segment_size: None,
                        src_ip: self.local_ip,
                    });
                }
            }

            let sent =
                self.populate_packet(now, space_id, buf, builder.max_size, builder.exact_number);

            // ACK-only packets should only be sent when explicitly allowed. If we write them due to
            // any other reason, there is a bug which leads to one component announcing write
            // readiness while not writing any data. This degrades performance. The condition is
            // only checked if the full MTU is available and when potentially large fixed-size
            // frames aren't queued, so that lack of space in the datagram isn't the reason for just
            // writing ACKs.
            debug_assert!(
                !(sent.is_ack_only(&self.streams)
                    && !can_send.acks
                    && can_send.other
                    && (buf_capacity - builder.datagram_start) == self.path.current_mtu() as usize
                    && self.datagrams.outgoing.is_empty()),
                "SendableFrames was {can_send:?}, but only ACKs have been written"
            );
            pad_datagram |= sent.requires_padding;

            if sent.largest_acked.is_some() {
                self.spaces[space_id].pending_acks.acks_sent();
                self.timers.stop(Timer::MaxAckDelay);
            }

            // Keep information about the packet around until it gets finalized
            sent_frames = Some(sent);

            // Don't increment space_idx.
            // We stay in the current space and check if there is more data to send.
        }

        // Finish the last packet
        if let Some(mut builder) = builder_storage {
            if pad_datagram {
                builder.pad_to(MIN_INITIAL_SIZE);
            }
            let last_packet_number = builder.exact_number;
            builder.finish_and_track(now, self, sent_frames, buf);
            self.path
                .congestion
                .on_sent(now, buf.len() as u64, last_packet_number);
        }

        self.app_limited = buf.is_empty() && !congestion_blocked;

        // Send MTU probe if necessary
        if buf.is_empty() && self.state.is_established() {
            let space_id = SpaceId::Data;
            let probe_size = match self
                .path
                .mtud
                .poll_transmit(now, self.packet_number_filter.peek(&self.spaces[space_id]))
            {
                Some(next_probe_size) => next_probe_size,
                None => return None,
            };

            let buf_capacity = probe_size as usize;
            buf.reserve(buf_capacity);

            let mut builder = PacketBuilder::new(
                now,
                space_id,
                self.rem_cids.active(),
                buf,
                buf_capacity,
                0,
                true,
                self,
            )?;

            // We implement MTU probes as ping packets padded up to the probe size
            buf.write(frame::Type::PING);
            self.stats.frame_tx.ping += 1;

            // If supported by the peer, we want no delays to the probe's ACK
            if self.peer_supports_ack_frequency() {
                buf.write(frame::Type::IMMEDIATE_ACK);
                self.stats.frame_tx.immediate_ack += 1;
            }

            builder.pad_to(probe_size);
            let sent_frames = SentFrames {
                non_retransmits: true,
                ..Default::default()
            };
            builder.finish_and_track(now, self, Some(sent_frames), buf);

            self.stats.path.sent_plpmtud_probes += 1;
            num_datagrams = 1;

            trace!(?probe_size, "writing MTUD probe");
        }

        if buf.is_empty() {
            return None;
        }

        trace!("sending {} bytes in {} datagrams", buf.len(), num_datagrams);
        self.path.total_sent = self.path.total_sent.saturating_add(buf.len() as u64);

        self.stats.udp_tx.on_sent(num_datagrams, buf.len());

        Some(Transmit {
            destination: self.path.remote,
            size: buf.len(),
            ecn: if self.path.sending_ecn {
                Some(EcnCodepoint::Ect0)
            } else {
                None
            },
            segment_size: match num_datagrams {
                1 => None,
                _ => Some(segment_size),
            },
            src_ip: self.local_ip,
        })
    }

    /// Indicate what types of frames are ready to send for the given space
    fn space_can_send(&self, space_id: SpaceId, frame_space_1rtt: usize) -> SendableFrames {
        if self.spaces[space_id].crypto.is_none()
            && (space_id != SpaceId::Data
                || self.zero_rtt_crypto.is_none()
                || self.side.is_server())
        {
            // No keys available for this space
            return SendableFrames::empty();
        }
        let mut can_send = self.spaces[space_id].can_send(&self.streams);
        if space_id == SpaceId::Data {
            can_send.other |= self.can_send_1rtt(frame_space_1rtt);
        }
        can_send
    }

    /// Process `ConnectionEvent`s generated by the associated `Endpoint`
    ///
    /// Will execute protocol logic upon receipt of a connection event, in turn preparing signals
    /// (including application `Event`s, `EndpointEvent`s and outgoing datagrams) that should be
    /// extracted through the relevant methods.
    pub fn handle_event(&mut self, event: ConnectionEvent) {
        use self::ConnectionEventInner::*;
        match event.0 {
            Datagram(DatagramConnectionEvent {
                now,
                remote,
                ecn,
                first_decode,
                remaining,
            }) => {
                // If this packet could initiate a migration and we're a client or a server that
                // forbids migration, drop the datagram. This could be relaxed to heuristically
                // permit NAT-rebinding-like migration.
                if remote != self.path.remote
                    && self.server_config.as_ref().map_or(true, |x| !x.migration)
                {
                    trace!("discarding packet from unrecognized peer {}", remote);
                    return;
                }

                let was_anti_amplification_blocked = self.path.anti_amplification_blocked(1);

                self.stats.udp_rx.datagrams += 1;
                self.stats.udp_rx.bytes += first_decode.len() as u64;
                let data_len = first_decode.len();

                self.handle_decode(now, remote, ecn, first_decode);
                // The current `path` might have changed inside `handle_decode`,
                // since the packet could have triggered a migration. Make sure
                // the data received is accounted for the most recent path by accessing
                // `path` after `handle_decode`.
                self.path.total_recvd = self.path.total_recvd.saturating_add(data_len as u64);

                if let Some(data) = remaining {
                    self.stats.udp_rx.bytes += data.len() as u64;
                    self.handle_coalesced(now, remote, ecn, data);
                }

                if was_anti_amplification_blocked {
                    // A prior attempt to set the loss detection timer may have failed due to
                    // anti-amplification, so ensure it's set now. Prevents a handshake deadlock if
                    // the server's first flight is lost.
                    self.set_loss_detection_timer(now);
                }
            }
            NewIdentifiers(ids, now) => {
                self.local_cid_state.new_cids(&ids, now);
                ids.into_iter().rev().for_each(|frame| {
                    self.spaces[SpaceId::Data].pending.new_cids.push(frame);
                });
                // Update Timer::PushNewCid
                if self
                    .timers
                    .get(Timer::PushNewCid)
                    .map_or(true, |x| x <= now)
                {
                    self.reset_cid_retirement();
                }
            }
        }
    }

    /// Process timer expirations
    ///
    /// Executes protocol logic, potentially preparing signals (including application `Event`s,
    /// `EndpointEvent`s and outgoing datagrams) that should be extracted through the relevant
    /// methods.
    ///
    /// It is most efficient to call this immediately after the system clock reaches the latest
    /// `Instant` that was output by `poll_timeout`; however spurious extra calls will simply
    /// no-op and therefore are safe.
    pub fn handle_timeout(&mut self, now: Instant) {
        for &timer in &Timer::VALUES {
            if !self.timers.is_expired(timer, now) {
                continue;
            }
            self.timers.stop(timer);
            trace!(timer = ?timer, "timeout");
            match timer {
                Timer::Close => {
                    self.state = State::Drained;
                    self.endpoint_events.push_back(EndpointEventInner::Drained);
                }
                Timer::Idle => {
                    self.kill(ConnectionError::TimedOut);
                }
                Timer::KeepAlive => {
                    trace!("sending keep-alive");
                    self.ping();
                }
                Timer::LossDetection => {
                    self.on_loss_detection_timeout(now);
                }
                Timer::KeyDiscard => {
                    self.zero_rtt_crypto = None;
                    self.prev_crypto = None;
                }
                Timer::PathValidation => {
                    debug!("path validation failed");
                    if let Some((_, prev)) = self.prev_path.take() {
                        self.path = prev;
                    }
                    self.path.challenge = None;
                    self.path.challenge_pending = false;
                }
                Timer::Pacing => trace!("pacing timer expired"),
                Timer::PushNewCid => {
                    // Update `retire_prior_to` field in NEW_CONNECTION_ID frame
                    let num_new_cid = self.local_cid_state.on_cid_timeout().into();
                    if !self.state.is_closed() {
                        trace!(
                            "push a new cid to peer RETIRE_PRIOR_TO field {}",
                            self.local_cid_state.retire_prior_to()
                        );
                        self.endpoint_events
                            .push_back(EndpointEventInner::NeedIdentifiers(now, num_new_cid));
                    }
                }
                Timer::MaxAckDelay => {
                    trace!("max ack delay reached");
                    // This timer is only armed in the Data space
                    self.spaces[SpaceId::Data]
                        .pending_acks
                        .on_max_ack_delay_timeout()
                }
            }
        }
    }

    /// Close a connection immediately
    ///
    /// This does not ensure delivery of outstanding data. It is the application's responsibility to
    /// call this only when all important communications have been completed, e.g. by calling
    /// [`SendStream::finish`] on outstanding streams and waiting for the corresponding
    /// [`StreamEvent::Finished`] event.
    ///
    /// If [`Streams::send_streams`] returns 0, all outstanding stream data has been
    /// delivered. There may still be data from the peer that has not been received.
    ///
    /// [`StreamEvent::Finished`]: crate::StreamEvent::Finished
    pub fn close(&mut self, now: Instant, error_code: VarInt, reason: Bytes) {
        self.close_inner(
            now,
            Close::Application(frame::ApplicationClose { error_code, reason }),
        )
    }

    fn close_inner(&mut self, now: Instant, reason: Close) {
        let was_closed = self.state.is_closed();
        if !was_closed {
            self.close_common();
            self.set_close_timer(now);
            self.close = true;
            self.state = State::Closed(state::Closed { reason });
        }
    }

    /// Control datagrams
    pub fn datagrams(&mut self) -> Datagrams<'_> {
        Datagrams { conn: self }
    }

    /// Returns connection statistics
    pub fn stats(&self) -> ConnectionStats {
        let mut stats = self.stats;
        stats.path.rtt = self.path.rtt.get();
        stats.path.cwnd = self.path.congestion.window();
        stats.path.current_mtu = self.path.mtud.current_mtu();

        stats
    }

    /// Ping the remote endpoint
    ///
    /// Causes an ACK-eliciting packet to be transmitted.
    pub fn ping(&mut self) {
        self.spaces[self.highest_space].ping_pending = true;
    }

    #[doc(hidden)]
    pub fn initiate_key_update(&mut self) {
        self.update_keys(None, false);
    }

    /// Get a session reference
    pub fn crypto_session(&self) -> &dyn crypto::Session {
        &*self.crypto
    }

    /// Whether the connection is in the process of being established
    ///
    /// If this returns `false`, the connection may be either established or closed, signaled by the
    /// emission of a `Connected` or `ConnectionLost` message respectively.
    pub fn is_handshaking(&self) -> bool {
        self.state.is_handshake()
    }

    /// Whether the connection is closed
    ///
    /// Closed connections cannot transport any further data. A connection becomes closed when
    /// either peer application intentionally closes it, or when either transport layer detects an
    /// error such as a time-out or certificate validation failure.
    ///
    /// A `ConnectionLost` event is emitted with details when the connection becomes closed.
    pub fn is_closed(&self) -> bool {
        self.state.is_closed()
    }

    /// Whether there is no longer any need to keep the connection around
    ///
    /// Closed connections become drained after a brief timeout to absorb any remaining in-flight
    /// packets from the peer. All drained connections have been closed.
    pub fn is_drained(&self) -> bool {
        self.state.is_drained()
    }

    /// For clients, if the peer accepted the 0-RTT data packets
    ///
    /// The value is meaningless until after the handshake completes.
    pub fn accepted_0rtt(&self) -> bool {
        self.accepted_0rtt
    }

    /// Whether 0-RTT is/was possible during the handshake
    pub fn has_0rtt(&self) -> bool {
        self.zero_rtt_enabled
    }

    /// Whether there are any pending retransmits
    pub fn has_pending_retransmits(&self) -> bool {
        !self.spaces[SpaceId::Data].pending.is_empty(&self.streams)
    }

    /// Look up whether we're the client or server of this Connection
    pub fn side(&self) -> Side {
        self.side
    }

    /// The latest socket address for this connection's peer
    pub fn remote_address(&self) -> SocketAddr {
        self.path.remote
    }

    /// The local IP address which was used when the peer established
    /// the connection
    ///
    /// This can be different from the address the endpoint is bound to, in case
    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
    ///
    /// This will return `None` for clients, or when no `local_ip` was passed to
    /// [`Endpoint::handle()`](crate::Endpoint::handle) for the datagrams establishing this
    /// connection.
    pub fn local_ip(&self) -> Option<IpAddr> {
        self.local_ip
    }

    /// Current best estimate of this connection's latency (round-trip-time)
    pub fn rtt(&self) -> Duration {
        self.path.rtt.get()
    }

    /// Current state of this connection's congestion controller, for debugging purposes
    pub fn congestion_state(&self) -> &dyn Controller {
        self.path.congestion.as_ref()
    }

    /// Modify the number of remotely initiated streams that may be concurrently open
    ///
    /// No streams may be opened by the peer unless fewer than `count` are already open. Large
    /// `count`s increase both minimum and worst-case memory consumption.
    pub fn set_max_concurrent_streams(&mut self, dir: Dir, count: VarInt) {
        self.streams.set_max_concurrent(dir, count);
        // If the limit was reduced, then a flow control update previously deemed insignificant may
        // now be significant.
        let pending = &mut self.spaces[SpaceId::Data].pending;
        self.streams.queue_max_stream_id(pending);
    }

    /// Current number of remotely initiated streams that may be concurrently open
    ///
    /// If the target for this limit is reduced using [`set_max_concurrent_streams`](Self::set_max_concurrent_streams),
    /// it will not change immediately, even if fewer streams are open. Instead, it will
    /// decrement by one for each time a remotely initiated stream of matching directionality is closed.
    pub fn max_concurrent_streams(&self, dir: Dir) -> u64 {
        self.streams.max_concurrent(dir)
    }

    /// See [`TransportConfig::receive_window()`]
    pub fn set_receive_window(&mut self, receive_window: VarInt) {
        if self.streams.set_receive_window(receive_window) {
            self.spaces[SpaceId::Data].pending.max_data = true;
        }
    }

    fn on_ack_received(
        &mut self,
        now: Instant,
        space: SpaceId,
        ack: frame::Ack,
    ) -> Result<(), TransportError> {
        if ack.largest >= self.spaces[space].next_packet_number {
            return Err(TransportError::PROTOCOL_VIOLATION("unsent packet acked"));
        }
        let new_largest = {
            let space = &mut self.spaces[space];
            if space
                .largest_acked_packet
                .map_or(true, |pn| ack.largest > pn)
            {
                space.largest_acked_packet = Some(ack.largest);
                if let Some(info) = space.sent_packets.get(&ack.largest) {
                    // This should always succeed, but a misbehaving peer might ACK a packet we
                    // haven't sent. At worst, that will result in us spuriously reducing the
                    // congestion window.
                    space.largest_acked_packet_sent = info.time_sent;
                }
                true
            } else {
                false
            }
        };

        // Avoid DoS from unreasonably huge ack ranges by filtering out just the new acks.
        let mut newly_acked = ArrayRangeSet::new();
        for range in ack.iter() {
            self.packet_number_filter.check_ack(space, range.clone())?;
            for (&pn, _) in self.spaces[space].sent_packets.range(range) {
                newly_acked.insert_one(pn);
            }
        }

        if newly_acked.is_empty() {
            return Ok(());
        }

        let mut ack_eliciting_acked = false;
        for packet in newly_acked.elts() {
            if let Some(info) = self.spaces[space].take(packet) {
                if let Some(acked) = info.largest_acked {
                    // Assume ACKs for all packets below the largest acknowledged in `packet` have
                    // been received. This can cause the peer to spuriously retransmit if some of
                    // our earlier ACKs were lost, but allows for simpler state tracking. See
                    // discussion at
                    // https://www.rfc-editor.org/rfc/rfc9000.html#name-limiting-ranges-by-tracking
                    self.spaces[space].pending_acks.subtract_below(acked);
                }
                ack_eliciting_acked |= info.ack_eliciting;

                // Notify MTU discovery that a packet was acked, because it might be an MTU probe
                let mtu_updated = self.path.mtud.on_acked(space, packet, info.size);
                if mtu_updated {
                    self.path
                        .congestion
                        .on_mtu_update(self.path.mtud.current_mtu());
                }

                // Notify ack frequency that a packet was acked, because it might contain an ACK_FREQUENCY frame
                self.ack_frequency.on_acked(packet);

                self.on_packet_acked(now, packet, info);
            }
        }

        self.path.congestion.on_end_acks(
            now,
            self.path.in_flight.bytes,
            self.app_limited,
            self.spaces[space].largest_acked_packet,
        );

        if new_largest && ack_eliciting_acked {
            let ack_delay = if space != SpaceId::Data {
                Duration::from_micros(0)
            } else {
                cmp::min(
                    self.ack_frequency.peer_max_ack_delay,
                    Duration::from_micros(ack.delay << self.peer_params.ack_delay_exponent.0),
                )
            };
            let rtt = instant_saturating_sub(now, self.spaces[space].largest_acked_packet_sent);
            self.path.rtt.update(ack_delay, rtt);
            if self.path.first_packet_after_rtt_sample.is_none() {
                self.path.first_packet_after_rtt_sample =
                    Some((space, self.spaces[space].next_packet_number));
            }
        }

        // Must be called before crypto/pto_count are clobbered
        self.detect_lost_packets(now, space, true);

        if self.peer_completed_address_validation() {
            self.pto_count = 0;
        }

        // Explicit congestion notification
        if self.path.sending_ecn {
            if let Some(ecn) = ack.ecn {
                // We only examine ECN counters from ACKs that we are certain we received in transmit
                // order, allowing us to compute an increase in ECN counts to compare against the number
                // of newly acked packets that remains well-defined in the presence of arbitrary packet
                // reordering.
                if new_largest {
                    let sent = self.spaces[space].largest_acked_packet_sent;
                    self.process_ecn(now, space, newly_acked.len() as u64, ecn, sent);
                }
            } else {
                // We always start out sending ECN, so any ack that doesn't acknowledge it disables it.
                debug!("ECN not acknowledged by peer");
                self.path.sending_ecn = false;
            }
        }

        self.set_loss_detection_timer(now);
        Ok(())
    }

    /// Process a new ECN block from an in-order ACK
    fn process_ecn(
        &mut self,
        now: Instant,
        space: SpaceId,
        newly_acked: u64,
        ecn: frame::EcnCounts,
        largest_sent_time: Instant,
    ) {
        match self.spaces[space].detect_ecn(newly_acked, ecn) {
            Err(e) => {
                debug!("halting ECN due to verification failure: {}", e);
                self.path.sending_ecn = false;
                // Wipe out the existing value because it might be garbage and could interfere with
                // future attempts to use ECN on new paths.
                self.spaces[space].ecn_feedback = frame::EcnCounts::ZERO;
            }
            Ok(false) => {}
            Ok(true) => {
                self.stats.path.congestion_events += 1;
                self.path
                    .congestion
                    .on_congestion_event(now, largest_sent_time, false, 0);
            }
        }
    }

    // Not timing-aware, so it's safe to call this for inferred acks, such as arise from
    // high-latency handshakes
    fn on_packet_acked(&mut self, now: Instant, pn: u64, info: SentPacket) {
        self.remove_in_flight(pn, &info);
        if info.ack_eliciting && self.path.challenge.is_none() {
            // Only pass ACKs to the congestion controller if we are not validating the current
            // path, so as to ignore any ACKs from older paths still coming in.
            self.path.congestion.on_ack(
                now,
                info.time_sent,
                info.size.into(),
                self.app_limited,
                &self.path.rtt,
            );
        }

        // Update state for confirmed delivery of frames
        if let Some(retransmits) = info.retransmits.get() {
            for (id, _) in retransmits.reset_stream.iter() {
                self.streams.reset_acked(*id);
            }
        }

        for frame in info.stream_frames {
            self.streams.received_ack_of(frame);
        }
    }

    fn set_key_discard_timer(&mut self, now: Instant, space: SpaceId) {
        let start = if self.zero_rtt_crypto.is_some() {
            now
        } else {
            self.prev_crypto
                .as_ref()
                .expect("no previous keys")
                .end_packet
                .as_ref()
                .expect("update not acknowledged yet")
                .1
        };
        self.timers
            .set(Timer::KeyDiscard, start + self.pto(space) * 3);
    }

    fn on_loss_detection_timeout(&mut self, now: Instant) {
        if let Some((_, pn_space)) = self.loss_time_and_space() {
            // Time threshold loss Detection
            self.detect_lost_packets(now, pn_space, false);
            self.set_loss_detection_timer(now);
            return;
        }

        let (_, space) = match self.pto_time_and_space(now) {
            Some(x) => x,
            None => {
                error!("PTO expired while unset");
                return;
            }
        };
        trace!(
            in_flight = self.path.in_flight.bytes,
            count = self.pto_count,
            ?space,
            "PTO fired"
        );

        let count = match self.path.in_flight.ack_eliciting {
            // A PTO when we're not expecting any ACKs must be due to handshake anti-amplification
            // deadlock preventions
            0 => {
                debug_assert!(!self.peer_completed_address_validation());
                1
            }
            // Conventional loss probe
            _ => 2,
        };
        self.spaces[space].loss_probes = self.spaces[space].loss_probes.saturating_add(count);
        self.pto_count = self.pto_count.saturating_add(1);
        self.set_loss_detection_timer(now);
    }

    fn detect_lost_packets(&mut self, now: Instant, pn_space: SpaceId, due_to_ack: bool) {
        let mut lost_packets = Vec::<u64>::new();
        let mut lost_mtu_probe = None;
        let in_flight_mtu_probe = self.path.mtud.in_flight_mtu_probe();
        let rtt = self.path.rtt.conservative();
        let loss_delay = cmp::max(rtt.mul_f32(self.config.time_threshold), TIMER_GRANULARITY);

        // Packets sent before this time are deemed lost.
        let lost_send_time = now.checked_sub(loss_delay).unwrap();
        let largest_acked_packet = self.spaces[pn_space].largest_acked_packet.unwrap();
        let packet_threshold = self.config.packet_threshold as u64;
        let mut size_of_lost_packets = 0u64;

        // InPersistentCongestion: Determine if all packets in the time period before the newest
        // lost packet, including the edges, are marked lost. PTO computation must always
        // include max ACK delay, i.e. operate as if in Data space (see RFC9001 §7.6.1).
        let congestion_period =
            self.pto(SpaceId::Data) * self.config.persistent_congestion_threshold;
        let mut persistent_congestion_start: Option<Instant> = None;
        let mut prev_packet = None;
        let mut in_persistent_congestion = false;

        let space = &mut self.spaces[pn_space];
        space.loss_time = None;

        for (&packet, info) in space.sent_packets.range(0..largest_acked_packet) {
            if prev_packet != Some(packet.wrapping_sub(1)) {
                // An intervening packet was acknowledged
                persistent_congestion_start = None;
            }

            if info.time_sent <= lost_send_time || largest_acked_packet >= packet + packet_threshold
            {
                if Some(packet) == in_flight_mtu_probe {
                    // Lost MTU probes are not included in `lost_packets`, because they should not
                    // trigger a congestion control response
                    lost_mtu_probe = in_flight_mtu_probe;
                } else {
                    lost_packets.push(packet);
                    size_of_lost_packets += info.size as u64;
                    if info.ack_eliciting && due_to_ack {
                        match persistent_congestion_start {
                            // Two ACK-eliciting packets lost more than congestion_period apart, with no
                            // ACKed packets in between
                            Some(start) if info.time_sent - start > congestion_period => {
                                in_persistent_congestion = true;
                            }
                            // Persistent congestion must start after the first RTT sample
                            None if self
                                .path
                                .first_packet_after_rtt_sample
                                .map_or(false, |x| x < (pn_space, packet)) =>
                            {
                                persistent_congestion_start = Some(info.time_sent);
                            }
                            _ => {}
                        }
                    }
                }
            } else {
                let next_loss_time = info.time_sent + loss_delay;
                space.loss_time = Some(
                    space
                        .loss_time
                        .map_or(next_loss_time, |x| cmp::min(x, next_loss_time)),
                );
                persistent_congestion_start = None;
            }

            prev_packet = Some(packet);
        }

        // OnPacketsLost
        if let Some(largest_lost) = lost_packets.last().cloned() {
            let old_bytes_in_flight = self.path.in_flight.bytes;
            let largest_lost_sent = self.spaces[pn_space].sent_packets[&largest_lost].time_sent;
            self.lost_packets += lost_packets.len() as u64;
            self.stats.path.lost_packets += lost_packets.len() as u64;
            self.stats.path.lost_bytes += size_of_lost_packets;
            trace!(
                "packets lost: {:?}, bytes lost: {}",
                lost_packets,
                size_of_lost_packets
            );

            for &packet in &lost_packets {
                let info = self.spaces[pn_space].take(packet).unwrap(); // safe: lost_packets is populated just above
                self.remove_in_flight(packet, &info);
                for frame in info.stream_frames {
                    self.streams.retransmit(frame);
                }
                self.spaces[pn_space].pending |= info.retransmits;
                self.path.mtud.on_non_probe_lost(packet, info.size);
            }

            if self.path.mtud.black_hole_detected(now) {
                self.stats.path.black_holes_detected += 1;
                self.path
                    .congestion
                    .on_mtu_update(self.path.mtud.current_mtu());
                if let Some(max_datagram_size) = self.datagrams().max_size() {
                    self.datagrams.drop_oversized(max_datagram_size);
                }
            }

            // Don't apply congestion penalty for lost ack-only packets
            let lost_ack_eliciting = old_bytes_in_flight != self.path.in_flight.bytes;

            if lost_ack_eliciting {
                self.stats.path.congestion_events += 1;
                self.path.congestion.on_congestion_event(
                    now,
                    largest_lost_sent,
                    in_persistent_congestion,
                    size_of_lost_packets,
                );
            }
        }

        // Handle a lost MTU probe
        if let Some(packet) = lost_mtu_probe {
            let info = self.spaces[SpaceId::Data].take(packet).unwrap(); // safe: lost_mtu_probe is omitted from lost_packets, and therefore must not have been removed yet
            self.remove_in_flight(packet, &info);
            self.path.mtud.on_probe_lost();
            self.stats.path.lost_plpmtud_probes += 1;
        }
    }

    fn loss_time_and_space(&self) -> Option<(Instant, SpaceId)> {
        SpaceId::iter()
            .filter_map(|id| Some((self.spaces[id].loss_time?, id)))
            .min_by_key(|&(time, _)| time)
    }

    fn pto_time_and_space(&self, now: Instant) -> Option<(Instant, SpaceId)> {
        let backoff = 2u32.pow(self.pto_count.min(MAX_BACKOFF_EXPONENT));
        let mut duration = self.path.rtt.pto_base() * backoff;

        if self.path.in_flight.ack_eliciting == 0 {
            debug_assert!(!self.peer_completed_address_validation());
            let space = match self.highest_space {
                SpaceId::Handshake => SpaceId::Handshake,
                _ => SpaceId::Initial,
            };
            return Some((now + duration, space));
        }

        let mut result = None;
        for space in SpaceId::iter() {
            if self.spaces[space].in_flight == 0 {
                continue;
            }
            if space == SpaceId::Data {
                // Skip ApplicationData until handshake completes.
                if self.is_handshaking() {
                    return result;
                }
                // Include max_ack_delay and backoff for ApplicationData.
                duration += self.ack_frequency.max_ack_delay_for_pto() * backoff;
            }
            let last_ack_eliciting = match self.spaces[space].time_of_last_ack_eliciting_packet {
                Some(time) => time,
                None => continue,
            };
            let pto = last_ack_eliciting + duration;
            if result.map_or(true, |(earliest_pto, _)| pto < earliest_pto) {
                result = Some((pto, space));
            }
        }
        result
    }

    #[allow(clippy::suspicious_operation_groupings)]
    fn peer_completed_address_validation(&self) -> bool {
        if self.side.is_server() || self.state.is_closed() {
            return true;
        }
        // The server is guaranteed to have validated our address if any of our handshake or 1-RTT
        // packets are acknowledged or we've seen HANDSHAKE_DONE and discarded handshake keys.
        self.spaces[SpaceId::Handshake]
            .largest_acked_packet
            .is_some()
            || self.spaces[SpaceId::Data].largest_acked_packet.is_some()
            || (self.spaces[SpaceId::Data].crypto.is_some()
                && self.spaces[SpaceId::Handshake].crypto.is_none())
    }

    fn set_loss_detection_timer(&mut self, now: Instant) {
        if self.state.is_closed() {
            // No loss detection takes place on closed connections, and `close_common` already
            // stopped time timer. Ensure we don't restart it inadvertently, e.g. in response to a
            // reordered packet being handled by state-insensitive code.
            return;
        }

        if let Some((loss_time, _)) = self.loss_time_and_space() {
            // Time threshold loss detection.
            self.timers.set(Timer::LossDetection, loss_time);
            return;
        }

        if self.path.anti_amplification_blocked(1) {
            // We wouldn't be able to send anything, so don't bother.
            self.timers.stop(Timer::LossDetection);
            return;
        }

        if self.path.in_flight.ack_eliciting == 0 && self.peer_completed_address_validation() {
            // There is nothing to detect lost, so no timer is set. However, the client needs to arm
            // the timer if the server might be blocked by the anti-amplification limit.
            self.timers.stop(Timer::LossDetection);
            return;
        }

        // Determine which PN space to arm PTO for.
        // Calculate PTO duration
        if let Some((timeout, _)) = self.pto_time_and_space(now) {
            self.timers.set(Timer::LossDetection, timeout);
        } else {
            self.timers.stop(Timer::LossDetection);
        }
    }

    /// Probe Timeout
    fn pto(&self, space: SpaceId) -> Duration {
        let max_ack_delay = match space {
            SpaceId::Initial | SpaceId::Handshake => Duration::new(0, 0),
            SpaceId::Data => self.ack_frequency.max_ack_delay_for_pto(),
        };
        self.path.rtt.pto_base() + max_ack_delay
    }

    fn on_packet_authenticated(
        &mut self,
        now: Instant,
        space_id: SpaceId,
        ecn: Option<EcnCodepoint>,
        packet: Option<u64>,
        spin: bool,
        is_1rtt: bool,
    ) {
        self.total_authed_packets += 1;
        self.reset_keep_alive(now);
        self.reset_idle_timeout(now, space_id);
        self.permit_idle_reset = true;
        self.receiving_ecn |= ecn.is_some();
        if let Some(x) = ecn {
            let space = &mut self.spaces[space_id];
            space.ecn_counters += x;

            if x.is_ce() {
                space.pending_acks.set_immediate_ack_required();
            }
        }

        let packet = match packet {
            Some(x) => x,
            None => return,
        };
        if self.side.is_server() {
            if self.spaces[SpaceId::Initial].crypto.is_some() && space_id == SpaceId::Handshake {
                // A server stops sending and processing Initial packets when it receives its first Handshake packet.
                self.discard_space(now, SpaceId::Initial);
            }
            if self.zero_rtt_crypto.is_some() && is_1rtt {
                // Discard 0-RTT keys soon after receiving a 1-RTT packet
                self.set_key_discard_timer(now, space_id)
            }
        }
        let space = &mut self.spaces[space_id];
        space.pending_acks.insert_one(packet, now);
        if packet >= space.rx_packet {
            space.rx_packet = packet;
            // Update outgoing spin bit, inverting iff we're the client
            self.spin = self.side.is_client() ^ spin;
        }
    }

    fn reset_idle_timeout(&mut self, now: Instant, space: SpaceId) {
        let timeout = match self.idle_timeout {
            None => return,
            Some(x) => Duration::from_millis(x.0),
        };
        if self.state.is_closed() {
            self.timers.stop(Timer::Idle);
            return;
        }
        let dt = cmp::max(timeout, 3 * self.pto(space));
        self.timers.set(Timer::Idle, now + dt);
    }

    fn reset_keep_alive(&mut self, now: Instant) {
        let interval = match self.config.keep_alive_interval {
            Some(x) if self.state.is_established() => x,
            _ => return,
        };
        self.timers.set(Timer::KeepAlive, now + interval);
    }

    fn reset_cid_retirement(&mut self) {
        if let Some(t) = self.local_cid_state.next_timeout() {
            self.timers.set(Timer::PushNewCid, t);
        }
    }

    /// Handle the already-decrypted first packet from the client
    ///
    /// Decrypting the first packet in the `Endpoint` allows stateless packet handling to be more
    /// efficient.
    pub(crate) fn handle_first_packet(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        ecn: Option<EcnCodepoint>,
        packet_number: u64,
        packet: InitialPacket,
        remaining: Option<BytesMut>,
    ) -> Result<(), ConnectionError> {
        let span = trace_span!("first recv");
        let _guard = span.enter();
        debug_assert!(self.side.is_server());
        let len = packet.header_data.len() + packet.payload.len();
        self.path.total_recvd = len as u64;

        match self.state {
            State::Handshake(ref mut state) => {
                state.expected_token = packet.header.token.clone();
            }
            _ => unreachable!("first packet must be delivered in Handshake state"),
        }

        self.on_packet_authenticated(
            now,
            SpaceId::Initial,
            ecn,
            Some(packet_number),
            false,
            false,
        );

        self.process_decrypted_packet(now, remote, Some(packet_number), packet.into())?;
        if let Some(data) = remaining {
            self.handle_coalesced(now, remote, ecn, data);
        }
        Ok(())
    }

    fn init_0rtt(&mut self) {
        let (header, packet) = match self.crypto.early_crypto() {
            Some(x) => x,
            None => return,
        };
        if self.side.is_client() {
            match self.crypto.transport_parameters() {
                Ok(params) => {
                    let params = params
                        .expect("crypto layer didn't supply transport parameters with ticket");
                    // Certain values must not be cached
                    let params = TransportParameters {
                        initial_src_cid: None,
                        original_dst_cid: None,
                        preferred_address: None,
                        retry_src_cid: None,
                        stateless_reset_token: None,
                        min_ack_delay: None,
                        ack_delay_exponent: TransportParameters::default().ack_delay_exponent,
                        max_ack_delay: TransportParameters::default().max_ack_delay,
                        ..params
                    };
                    self.set_peer_params(params);
                }
                Err(e) => {
                    error!("session ticket has malformed transport parameters: {}", e);
                    return;
                }
            }
        }
        trace!("0-RTT enabled");
        self.zero_rtt_enabled = true;
        self.zero_rtt_crypto = Some(ZeroRttCrypto { header, packet });
    }

    fn read_crypto(
        &mut self,
        space: SpaceId,
        crypto: &frame::Crypto,
        payload_len: usize,
    ) -> Result<(), TransportError> {
        let expected = if !self.state.is_handshake() {
            SpaceId::Data
        } else if self.highest_space == SpaceId::Initial {
            SpaceId::Initial
        } else {
            // On the server, self.highest_space can be Data after receiving the client's first
            // flight, but we expect Handshake CRYPTO until the handshake is complete.
            SpaceId::Handshake
        };
        // We can't decrypt Handshake packets when highest_space is Initial, CRYPTO frames in 0-RTT
        // packets are illegal, and we don't process 1-RTT packets until the handshake is
        // complete. Therefore, we will never see CRYPTO data from a later-than-expected space.
        debug_assert!(space <= expected, "received out-of-order CRYPTO data");

        let end = crypto.offset + crypto.data.len() as u64;
        if space < expected && end > self.spaces[space].crypto_stream.bytes_read() {
            warn!(
                "received new {:?} CRYPTO data when expecting {:?}",
                space, expected
            );
            return Err(TransportError::PROTOCOL_VIOLATION(
                "new data at unexpected encryption level",
            ));
        }

        let space = &mut self.spaces[space];
        let max = end.saturating_sub(space.crypto_stream.bytes_read());
        if max > self.config.crypto_buffer_size as u64 {
            return Err(TransportError::CRYPTO_BUFFER_EXCEEDED(""));
        }

        space
            .crypto_stream
            .insert(crypto.offset, crypto.data.clone(), payload_len);
        while let Some(chunk) = space.crypto_stream.read(usize::MAX, true) {
            trace!("consumed {} CRYPTO bytes", chunk.bytes.len());
            if self.crypto.read_handshake(&chunk.bytes)? {
                self.events.push_back(Event::HandshakeDataReady);
            }
        }

        Ok(())
    }

    fn write_crypto(&mut self) {
        loop {
            let space = self.highest_space;
            let mut outgoing = Vec::new();
            if let Some(crypto) = self.crypto.write_handshake(&mut outgoing) {
                match space {
                    SpaceId::Initial => {
                        self.upgrade_crypto(SpaceId::Handshake, crypto);
                    }
                    SpaceId::Handshake => {
                        self.upgrade_crypto(SpaceId::Data, crypto);
                    }
                    _ => unreachable!("got updated secrets during 1-RTT"),
                }
            }
            if outgoing.is_empty() {
                if space == self.highest_space {
                    break;
                } else {
                    // Keys updated, check for more data to send
                    continue;
                }
            }
            let offset = self.spaces[space].crypto_offset;
            let outgoing = Bytes::from(outgoing);
            if let State::Handshake(ref mut state) = self.state {
                if space == SpaceId::Initial && offset == 0 && self.side.is_client() {
                    state.client_hello = Some(outgoing.clone());
                }
            }
            self.spaces[space].crypto_offset += outgoing.len() as u64;
            trace!("wrote {} {:?} CRYPTO bytes", outgoing.len(), space);
            self.spaces[space].pending.crypto.push_back(frame::Crypto {
                offset,
                data: outgoing,
            });
        }
    }

    /// Switch to stronger cryptography during handshake
    fn upgrade_crypto(&mut self, space: SpaceId, crypto: Keys) {
        debug_assert!(
            self.spaces[space].crypto.is_none(),
            "already reached packet space {space:?}"
        );
        trace!("{:?} keys ready", space);
        if space == SpaceId::Data {
            // Precompute the first key update
            self.next_crypto = Some(
                self.crypto
                    .next_1rtt_keys()
                    .expect("handshake should be complete"),
            );
        }

        self.spaces[space].crypto = Some(crypto);
        debug_assert!(space as usize > self.highest_space as usize);
        self.highest_space = space;
        if space == SpaceId::Data && self.side.is_client() {
            // Discard 0-RTT keys because 1-RTT keys are available.
            self.zero_rtt_crypto = None;
        }
    }

    fn discard_space(&mut self, now: Instant, space_id: SpaceId) {
        debug_assert!(space_id != SpaceId::Data);
        trace!("discarding {:?} keys", space_id);
        if space_id == SpaceId::Initial {
            // No longer needed
            self.retry_token = Bytes::new();
        }
        let space = &mut self.spaces[space_id];
        space.crypto = None;
        space.time_of_last_ack_eliciting_packet = None;
        space.loss_time = None;
        space.in_flight = 0;
        let sent_packets = mem::take(&mut space.sent_packets);
        for (pn, packet) in sent_packets.into_iter() {
            self.remove_in_flight(pn, &packet);
        }
        self.set_loss_detection_timer(now)
    }

    fn handle_coalesced(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        ecn: Option<EcnCodepoint>,
        data: BytesMut,
    ) {
        self.path.total_recvd = self.path.total_recvd.saturating_add(data.len() as u64);
        let mut remaining = Some(data);
        while let Some(data) = remaining {
            match PartialDecode::new(
                data,
                &FixedLengthConnectionIdParser::new(self.local_cid_state.cid_len()),
                &[self.version],
                self.endpoint_config.grease_quic_bit,
            ) {
                Ok((partial_decode, rest)) => {
                    remaining = rest;
                    self.handle_decode(now, remote, ecn, partial_decode);
                }
                Err(e) => {
                    trace!("malformed header: {}", e);
                    return;
                }
            }
        }
    }

    fn handle_decode(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        ecn: Option<EcnCodepoint>,
        partial_decode: PartialDecode,
    ) {
        if let Some(decoded) = packet_crypto::unprotect_header(
            partial_decode,
            &self.spaces,
            self.zero_rtt_crypto.as_ref(),
            self.peer_params.stateless_reset_token,
        ) {
            self.handle_packet(now, remote, ecn, decoded.packet, decoded.stateless_reset);
        }
    }

    fn handle_packet(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        ecn: Option<EcnCodepoint>,
        packet: Option<Packet>,
        stateless_reset: bool,
    ) {
        self.stats.udp_rx.ios += 1;
        if let Some(ref packet) = packet {
            trace!(
                "got {:?} packet ({} bytes) from {} using id {}",
                packet.header.space(),
                packet.payload.len() + packet.header_data.len(),
                remote,
                packet.header.dst_cid(),
            );
        }

        if self.is_handshaking() && remote != self.path.remote {
            debug!("discarding packet with unexpected remote during handshake");
            return;
        }

        let was_closed = self.state.is_closed();
        let was_drained = self.state.is_drained();

        let decrypted = match packet {
            None => Err(None),
            Some(mut packet) => self
                .decrypt_packet(now, &mut packet)
                .map(move |number| (packet, number)),
        };
        let result = match decrypted {
            _ if stateless_reset => {
                debug!("got stateless reset");
                Err(ConnectionError::Reset)
            }
            Err(Some(e)) => {
                warn!("illegal packet: {}", e);
                Err(e.into())
            }
            Err(None) => {
                debug!("failed to authenticate packet");
                self.authentication_failures += 1;
                let integrity_limit = self.spaces[self.highest_space]
                    .crypto
                    .as_ref()
                    .unwrap()
                    .packet
                    .local
                    .integrity_limit();
                if self.authentication_failures > integrity_limit {
                    Err(TransportError::AEAD_LIMIT_REACHED("integrity limit violated").into())
                } else {
                    return;
                }
            }
            Ok((packet, number)) => {
                let span = match number {
                    Some(pn) => trace_span!("recv", space = ?packet.header.space(), pn),
                    None => trace_span!("recv", space = ?packet.header.space()),
                };
                let _guard = span.enter();

                let is_duplicate = |n| self.spaces[packet.header.space()].dedup.insert(n);
                if number.map_or(false, is_duplicate) {
                    debug!("discarding possible duplicate packet");
                    return;
                } else if self.state.is_handshake() && packet.header.is_short() {
                    // TODO: SHOULD buffer these to improve reordering tolerance.
                    trace!("dropping short packet during handshake");
                    return;
                } else {
                    if let Header::Initial(InitialHeader { ref token, .. }) = packet.header {
                        if let State::Handshake(ref hs) = self.state {
                            if self.side.is_server() && token != &hs.expected_token {
                                // Clients must send the same retry token in every Initial. Initial
                                // packets can be spoofed, so we discard rather than killing the
                                // connection.
                                warn!("discarding Initial with invalid retry token");
                                return;
                            }
                        }
                    }

                    if !self.state.is_closed() {
                        let spin = match packet.header {
                            Header::Short { spin, .. } => spin,
                            _ => false,
                        };
                        self.on_packet_authenticated(
                            now,
                            packet.header.space(),
                            ecn,
                            number,
                            spin,
                            packet.header.is_1rtt(),
                        );
                    }
                    self.process_decrypted_packet(now, remote, number, packet)
                }
            }
        };

        // State transitions for error cases
        if let Err(conn_err) = result {
            self.error = Some(conn_err.clone());
            self.state = match conn_err {
                ConnectionError::ApplicationClosed(reason) => State::closed(reason),
                ConnectionError::ConnectionClosed(reason) => State::closed(reason),
                ConnectionError::Reset
                | ConnectionError::TransportError(TransportError {
                    code: TransportErrorCode::AEAD_LIMIT_REACHED,
                    ..
                }) => State::Drained,
                ConnectionError::TimedOut => {
                    unreachable!("timeouts aren't generated by packet processing");
                }
                ConnectionError::TransportError(err) => {
                    debug!("closing connection due to transport error: {}", err);
                    State::closed(err)
                }
                ConnectionError::VersionMismatch => State::Draining,
                ConnectionError::LocallyClosed => {
                    unreachable!("LocallyClosed isn't generated by packet processing");
                }
                ConnectionError::CidsExhausted => {
                    unreachable!("CidsExhausted isn't generated by packet processing");
                }
            };
        }

        if !was_closed && self.state.is_closed() {
            self.close_common();
            if !self.state.is_drained() {
                self.set_close_timer(now);
            }
        }
        if !was_drained && self.state.is_drained() {
            self.endpoint_events.push_back(EndpointEventInner::Drained);
            // Close timer may have been started previously, e.g. if we sent a close and got a
            // stateless reset in response
            self.timers.stop(Timer::Close);
        }

        // Transmit CONNECTION_CLOSE if necessary
        if let State::Closed(_) = self.state {
            self.close = remote == self.path.remote;
        }
    }

    fn process_decrypted_packet(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        number: Option<u64>,
        packet: Packet,
    ) -> Result<(), ConnectionError> {
        let state = match self.state {
            State::Established => {
                match packet.header.space() {
                    SpaceId::Data => self.process_payload(now, remote, number.unwrap(), packet)?,
                    _ if packet.header.has_frames() => self.process_early_payload(now, packet)?,
                    _ => {
                        trace!("discarding unexpected pre-handshake packet");
                    }
                }
                return Ok(());
            }
            State::Closed(_) => {
                for result in frame::Iter::new(packet.payload.freeze())? {
                    let frame = match result {
                        Ok(frame) => frame,
                        Err(err) => {
                            debug!("frame decoding error: {err:?}");
                            continue;
                        }
                    };

                    if let Frame::Padding = frame {
                        continue;
                    };

                    self.stats.frame_rx.record(&frame);

                    if let Frame::Close(_) = frame {
                        trace!("draining");
                        self.state = State::Draining;
                        break;
                    }
                }
                return Ok(());
            }
            State::Draining | State::Drained => return Ok(()),
            State::Handshake(ref mut state) => state,
        };

        match packet.header {
            Header::Retry {
                src_cid: rem_cid, ..
            } => {
                if self.side.is_server() {
                    return Err(TransportError::PROTOCOL_VIOLATION("client sent Retry").into());
                }

                if self.total_authed_packets > 1
                            || packet.payload.len() <= 16 // token + 16 byte tag
                            || !self.crypto.is_valid_retry(
                                &self.rem_cids.active(),
                                &packet.header_data,
                                &packet.payload,
                            )
                {
                    trace!("discarding invalid Retry");
                    // - After the client has received and processed an Initial or Retry
                    //   packet from the server, it MUST discard any subsequent Retry
                    //   packets that it receives.
                    // - A client MUST discard a Retry packet with a zero-length Retry Token
                    //   field.
                    // - Clients MUST discard Retry packets that have a Retry Integrity Tag
                    //   that cannot be validated
                    return Ok(());
                }

                trace!("retrying with CID {}", rem_cid);
                let client_hello = state.client_hello.take().unwrap();
                self.retry_src_cid = Some(rem_cid);
                self.rem_cids.update_initial_cid(rem_cid);
                self.rem_handshake_cid = rem_cid;

                let space = &mut self.spaces[SpaceId::Initial];
                if let Some(info) = space.take(0) {
                    self.on_packet_acked(now, 0, info);
                };

                self.discard_space(now, SpaceId::Initial); // Make sure we clean up after any retransmitted Initials
                self.spaces[SpaceId::Initial] = PacketSpace {
                    crypto: Some(self.crypto.initial_keys(&rem_cid, self.side)),
                    next_packet_number: self.spaces[SpaceId::Initial].next_packet_number,
                    crypto_offset: client_hello.len() as u64,
                    ..PacketSpace::new(now)
                };
                self.spaces[SpaceId::Initial]
                    .pending
                    .crypto
                    .push_back(frame::Crypto {
                        offset: 0,
                        data: client_hello,
                    });

                // Retransmit all 0-RTT data
                let zero_rtt = mem::take(&mut self.spaces[SpaceId::Data].sent_packets);
                for (pn, info) in zero_rtt {
                    self.remove_in_flight(pn, &info);
                    self.spaces[SpaceId::Data].pending |= info.retransmits;
                }
                self.streams.retransmit_all_for_0rtt();

                let token_len = packet.payload.len() - 16;
                self.retry_token = packet.payload.freeze().split_to(token_len);
                self.state = State::Handshake(state::Handshake {
                    expected_token: Bytes::new(),
                    rem_cid_set: false,
                    client_hello: None,
                });
                Ok(())
            }
            Header::Long {
                ty: LongType::Handshake,
                src_cid: rem_cid,
                ..
            } => {
                if rem_cid != self.rem_handshake_cid {
                    debug!(
                        "discarding packet with mismatched remote CID: {} != {}",
                        self.rem_handshake_cid, rem_cid
                    );
                    return Ok(());
                }
                self.path.validated = true;

                self.process_early_payload(now, packet)?;
                if self.state.is_closed() {
                    return Ok(());
                }

                if self.crypto.is_handshaking() {
                    trace!("handshake ongoing");
                    return Ok(());
                }

                if self.side.is_client() {
                    // Client-only because server params were set from the client's Initial
                    let params =
                        self.crypto
                            .transport_parameters()?
                            .ok_or_else(|| TransportError {
                                code: TransportErrorCode::crypto(0x6d),
                                frame: None,
                                reason: "transport parameters missing".into(),
                            })?;

                    if self.has_0rtt() {
                        if !self.crypto.early_data_accepted().unwrap() {
                            debug_assert!(self.side.is_client());
                            debug!("0-RTT rejected");
                            self.accepted_0rtt = false;
                            self.streams.zero_rtt_rejected();

                            // Discard already-queued frames
                            self.spaces[SpaceId::Data].pending = Retransmits::default();

                            // Discard 0-RTT packets
                            let sent_packets =
                                mem::take(&mut self.spaces[SpaceId::Data].sent_packets);
                            for (pn, packet) in sent_packets {
                                self.remove_in_flight(pn, &packet);
                            }
                        } else {
                            self.accepted_0rtt = true;
                            params.validate_resumption_from(&self.peer_params)?;
                        }
                    }
                    if let Some(token) = params.stateless_reset_token {
                        self.endpoint_events
                            .push_back(EndpointEventInner::ResetToken(self.path.remote, token));
                    }
                    self.handle_peer_params(params)?;
                    self.issue_first_cids(now);
                } else {
                    // Server-only
                    self.spaces[SpaceId::Data].pending.handshake_done = true;
                    self.discard_space(now, SpaceId::Handshake);
                }

                self.events.push_back(Event::Connected);
                self.state = State::Established;
                trace!("established");
                Ok(())
            }
            Header::Initial(InitialHeader {
                src_cid: rem_cid, ..
            }) => {
                if !state.rem_cid_set {
                    trace!("switching remote CID to {}", rem_cid);
                    let mut state = state.clone();
                    self.rem_cids.update_initial_cid(rem_cid);
                    self.rem_handshake_cid = rem_cid;
                    self.orig_rem_cid = rem_cid;
                    state.rem_cid_set = true;
                    self.state = State::Handshake(state);
                } else if rem_cid != self.rem_handshake_cid {
                    debug!(
                        "discarding packet with mismatched remote CID: {} != {}",
                        self.rem_handshake_cid, rem_cid
                    );
                    return Ok(());
                }

                let starting_space = self.highest_space;
                self.process_early_payload(now, packet)?;

                if self.side.is_server()
                    && starting_space == SpaceId::Initial
                    && self.highest_space != SpaceId::Initial
                {
                    let params =
                        self.crypto
                            .transport_parameters()?
                            .ok_or_else(|| TransportError {
                                code: TransportErrorCode::crypto(0x6d),
                                frame: None,
                                reason: "transport parameters missing".into(),
                            })?;
                    self.handle_peer_params(params)?;
                    self.issue_first_cids(now);
                    self.init_0rtt();
                }
                Ok(())
            }
            Header::Long {
                ty: LongType::ZeroRtt,
                ..
            } => {
                self.process_payload(now, remote, number.unwrap(), packet)?;
                Ok(())
            }
            Header::VersionNegotiate { .. } => {
                if self.total_authed_packets > 1 {
                    return Ok(());
                }
                let supported = packet
                    .payload
                    .chunks(4)
                    .any(|x| match <[u8; 4]>::try_from(x) {
                        Ok(version) => self.version == u32::from_be_bytes(version),
                        Err(_) => false,
                    });
                if supported {
                    return Ok(());
                }
                debug!("remote doesn't support our version");
                Err(ConnectionError::VersionMismatch)
            }
            Header::Short { .. } => unreachable!(
                "short packets received during handshake are discarded in handle_packet"
            ),
        }
    }

    /// Process an Initial or Handshake packet payload
    fn process_early_payload(
        &mut self,
        now: Instant,
        packet: Packet,
    ) -> Result<(), TransportError> {
        debug_assert_ne!(packet.header.space(), SpaceId::Data);
        let payload_len = packet.payload.len();
        let mut ack_eliciting = false;
        for result in frame::Iter::new(packet.payload.freeze())? {
            let frame = result?;
            let span = match frame {
                Frame::Padding => continue,
                _ => Some(trace_span!("frame", ty = %frame.ty())),
            };

            self.stats.frame_rx.record(&frame);

            let _guard = span.as_ref().map(|x| x.enter());
            ack_eliciting |= frame.is_ack_eliciting();

            // Process frames
            match frame {
                Frame::Padding | Frame::Ping => {}
                Frame::Crypto(frame) => {
                    self.read_crypto(packet.header.space(), &frame, payload_len)?;
                }
                Frame::Ack(ack) => {
                    self.on_ack_received(now, packet.header.space(), ack)?;
                }
                Frame::Close(reason) => {
                    self.error = Some(reason.into());
                    self.state = State::Draining;
                    return Ok(());
                }
                _ => {
                    let mut err =
                        TransportError::PROTOCOL_VIOLATION("illegal frame type in handshake");
                    err.frame = Some(frame.ty());
                    return Err(err);
                }
            }
        }

        if ack_eliciting {
            // In the initial and handshake spaces, ACKs must be sent immediately
            self.spaces[packet.header.space()]
                .pending_acks
                .set_immediate_ack_required();
        }

        self.write_crypto();
        Ok(())
    }

    fn process_payload(
        &mut self,
        now: Instant,
        remote: SocketAddr,
        number: u64,
        packet: Packet,
    ) -> Result<(), TransportError> {
        let payload = packet.payload.freeze();
        let mut is_probing_packet = true;
        let mut close = None;
        let payload_len = payload.len();
        let mut ack_eliciting = false;
        for result in frame::Iter::new(payload)? {
            let frame = result?;
            let span = match frame {
                Frame::Padding => continue,
                _ => Some(trace_span!("frame", ty = %frame.ty())),
            };

            self.stats.frame_rx.record(&frame);
            // Crypto, Stream and Datagram frames are special cased in order no pollute
            // the log with payload data
            match &frame {
                Frame::Crypto(f) => {
                    trace!(offset = f.offset, len = f.data.len(), "got crypto frame");
                }
                Frame::Stream(f) => {
                    trace!(id = %f.id, offset = f.offset, len = f.data.len(), fin = f.fin, "got stream frame");
                }
                Frame::Datagram(f) => {
                    trace!(len = f.data.len(), "got datagram frame");
                }
                f => {
                    trace!("got frame {:?}", f);
                }
            }

            let _guard = span.as_ref().map(|x| x.enter());
            if packet.header.is_0rtt() {
                match frame {
                    Frame::Crypto(_) | Frame::Close(Close::Application(_)) => {
                        return Err(TransportError::PROTOCOL_VIOLATION(
                            "illegal frame type in 0-RTT",
                        ));
                    }
                    _ => {}
                }
            }
            ack_eliciting |= frame.is_ack_eliciting();

            // Check whether this could be a probing packet
            match frame {
                Frame::Padding
                | Frame::PathChallenge(_)
                | Frame::PathResponse(_)
                | Frame::NewConnectionId(_) => {}
                _ => {
                    is_probing_packet = false;
                }
            }
            match frame {
                Frame::Crypto(frame) => {
                    self.read_crypto(SpaceId::Data, &frame, payload_len)?;
                }
                Frame::Stream(frame) => {
                    if self.streams.received(frame, payload_len)?.should_transmit() {
                        self.spaces[SpaceId::Data].pending.max_data = true;
                    }
                }
                Frame::Ack(ack) => {
                    self.on_ack_received(now, SpaceId::Data, ack)?;
                }
                Frame::Padding | Frame::Ping => {}
                Frame::Close(reason) => {
                    close = Some(reason);
                }
                Frame::PathChallenge(token) => {
                    self.path_responses.push(number, token, remote);
                    if remote == self.path.remote {
                        // PATH_CHALLENGE on active path, possible off-path packet forwarding
                        // attack. Send a non-probing packet to recover the active path.
                        match self.peer_supports_ack_frequency() {
                            true => self.immediate_ack(),
                            false => self.ping(),
                        }
                    }
                }
                Frame::PathResponse(token) => {
                    if self.path.challenge == Some(token) && remote == self.path.remote {
                        trace!("new path validated");
                        self.timers.stop(Timer::PathValidation);
                        self.path.challenge = None;
                        self.path.validated = true;
                        if let Some((_, ref mut prev_path)) = self.prev_path {
                            prev_path.challenge = None;
                            prev_path.challenge_pending = false;
                        }
                    } else {
                        debug!(token, "ignoring invalid PATH_RESPONSE");
                    }
                }
                Frame::MaxData(bytes) => {
                    self.streams.received_max_data(bytes);
                }
                Frame::MaxStreamData { id, offset } => {
                    self.streams.received_max_stream_data(id, offset)?;
                }
                Frame::MaxStreams { dir, count } => {
                    self.streams.received_max_streams(dir, count)?;
                }
                Frame::ResetStream(frame) => {
                    if self.streams.received_reset(frame)?.should_transmit() {
                        self.spaces[SpaceId::Data].pending.max_data = true;
                    }
                }
                Frame::DataBlocked { offset } => {
                    debug!(offset, "peer claims to be blocked at connection level");
                }
                Frame::StreamDataBlocked { id, offset } => {
                    if id.initiator() == self.side && id.dir() == Dir::Uni {
                        debug!("got STREAM_DATA_BLOCKED on send-only {}", id);
                        return Err(TransportError::STREAM_STATE_ERROR(
                            "STREAM_DATA_BLOCKED on send-only stream",
                        ));
                    }
                    debug!(
                        stream = %id,
                        offset, "peer claims to be blocked at stream level"
                    );
                }
                Frame::StreamsBlocked { dir, limit } => {
                    if limit > MAX_STREAM_COUNT {
                        return Err(TransportError::FRAME_ENCODING_ERROR(
                            "unrepresentable stream limit",
                        ));
                    }
                    debug!(
                        "peer claims to be blocked opening more than {} {} streams",
                        limit, dir
                    );
                }
                Frame::StopSending(frame::StopSending { id, error_code }) => {
                    if id.initiator() != self.side {
                        if id.dir() == Dir::Uni {
                            debug!("got STOP_SENDING on recv-only {}", id);
                            return Err(TransportError::STREAM_STATE_ERROR(
                                "STOP_SENDING on recv-only stream",
                            ));
                        }
                    } else if self.streams.is_local_unopened(id) {
                        return Err(TransportError::STREAM_STATE_ERROR(
                            "STOP_SENDING on unopened stream",
                        ));
                    }
                    self.streams.received_stop_sending(id, error_code);
                }
                Frame::RetireConnectionId { sequence } => {
                    let allow_more_cids = self
                        .local_cid_state
                        .on_cid_retirement(sequence, self.peer_params.issue_cids_limit())?;
                    self.endpoint_events
                        .push_back(EndpointEventInner::RetireConnectionId(
                            now,
                            sequence,
                            allow_more_cids,
                        ));
                }
                Frame::NewConnectionId(frame) => {
                    trace!(
                        sequence = frame.sequence,
                        id = %frame.id,
                        retire_prior_to = frame.retire_prior_to,
                    );
                    if self.rem_cids.active().is_empty() {
                        return Err(TransportError::PROTOCOL_VIOLATION(
                            "NEW_CONNECTION_ID when CIDs aren't in use",
                        ));
                    }
                    if frame.retire_prior_to > frame.sequence {
                        return Err(TransportError::PROTOCOL_VIOLATION(
                            "NEW_CONNECTION_ID retiring unissued CIDs",
                        ));
                    }

                    use crate::cid_queue::InsertError;
                    match self.rem_cids.insert(frame) {
                        Ok(None) => {}
                        Ok(Some((retired, reset_token))) => {
                            let pending_retired =
                                &mut self.spaces[SpaceId::Data].pending.retire_cids;
                            /// Ensure `pending_retired` cannot grow without bound. Limit is
                            /// somewhat arbitrary but very permissive.
                            const MAX_PENDING_RETIRED_CIDS: u64 = CidQueue::LEN as u64 * 10;
                            // We don't bother counting in-flight frames because those are bounded
                            // by congestion control.
                            if (pending_retired.len() as u64)
                                .saturating_add(retired.end.saturating_sub(retired.start))
                                > MAX_PENDING_RETIRED_CIDS
                            {
                                return Err(TransportError::CONNECTION_ID_LIMIT_ERROR(
                                    "queued too many retired CIDs",
                                ));
                            }
                            pending_retired.extend(retired);
                            self.set_reset_token(reset_token);
                        }
                        Err(InsertError::ExceedsLimit) => {
                            return Err(TransportError::CONNECTION_ID_LIMIT_ERROR(""));
                        }
                        Err(InsertError::Retired) => {
                            trace!("discarding already-retired");
                            // RETIRE_CONNECTION_ID might not have been previously sent if e.g. a
                            // range of connection IDs larger than the active connection ID limit
                            // was retired all at once via retire_prior_to.
                            self.spaces[SpaceId::Data]
                                .pending
                                .retire_cids
                                .push(frame.sequence);
                            continue;
                        }
                    };

                    if self.side.is_server() && self.rem_cids.active_seq() == 0 {
                        // We're a server still using the initial remote CID for the client, so
                        // let's switch immediately to enable clientside stateless resets.
                        self.update_rem_cid();
                    }
                }
                Frame::NewToken { token } => {
                    if self.side.is_server() {
                        return Err(TransportError::PROTOCOL_VIOLATION("client sent NEW_TOKEN"));
                    }
                    if token.is_empty() {
                        return Err(TransportError::FRAME_ENCODING_ERROR("empty token"));
                    }
                    trace!("got new token");
                    // TODO: Cache, or perhaps forward to user?
                }
                Frame::Datagram(datagram) => {
                    if self
                        .datagrams
                        .received(datagram, &self.config.datagram_receive_buffer_size)?
                    {
                        self.events.push_back(Event::DatagramReceived);
                    }
                }
                Frame::AckFrequency(ack_frequency) => {
                    // This frame can only be sent in the Data space
                    let space = &mut self.spaces[SpaceId::Data];

                    if !self
                        .ack_frequency
                        .ack_frequency_received(&ack_frequency, &mut space.pending_acks)?
                    {
                        // The AckFrequency frame is stale (we have already received a more recent one)
                        continue;
                    }

                    // Our `max_ack_delay` has been updated, so we may need to adjust its associated
                    // timeout
                    if let Some(timeout) = space
                        .pending_acks
                        .max_ack_delay_timeout(self.ack_frequency.max_ack_delay)
                    {
                        self.timers.set(Timer::MaxAckDelay, timeout);
                    }
                }
                Frame::ImmediateAck => {
                    // This frame can only be sent in the Data space
                    self.spaces[SpaceId::Data]
                        .pending_acks
                        .set_immediate_ack_required();
                }
                Frame::HandshakeDone => {
                    if self.side.is_server() {
                        return Err(TransportError::PROTOCOL_VIOLATION(
                            "client sent HANDSHAKE_DONE",
                        ));
                    }
                    if self.spaces[SpaceId::Handshake].crypto.is_some() {
                        self.discard_space(now, SpaceId::Handshake);
                    }
                }
            }
        }

        let space = &mut self.spaces[SpaceId::Data];
        if space
            .pending_acks
            .packet_received(now, number, ack_eliciting, &space.dedup)
        {
            self.timers
                .set(Timer::MaxAckDelay, now + self.ack_frequency.max_ack_delay);
        }

        // Issue stream ID credit due to ACKs of outgoing finish/resets and incoming finish/resets
        // on stopped streams. Incoming finishes/resets on open streams are not handled here as they
        // are only freed, and hence only issue credit, once the application has been notified
        // during a read on the stream.
        let pending = &mut self.spaces[SpaceId::Data].pending;
        self.streams.queue_max_stream_id(pending);

        if let Some(reason) = close {
            self.error = Some(reason.into());
            self.state = State::Draining;
            self.close = true;
        }

        if remote != self.path.remote
            && !is_probing_packet
            && number == self.spaces[SpaceId::Data].rx_packet
        {
            debug_assert!(
                self.server_config
                    .as_ref()
                    .expect("packets from unknown remote should be dropped by clients")
                    .migration,
                "migration-initiating packets should have been dropped immediately"
            );
            self.migrate(now, remote);
            // Break linkability, if possible
            self.update_rem_cid();
            self.spin = false;
        }

        Ok(())
    }

    fn migrate(&mut self, now: Instant, remote: SocketAddr) {
        trace!(%remote, "migration initiated");
        // Reset rtt/congestion state for new path unless it looks like a NAT rebinding.
        // Note that the congestion window will not grow until validation terminates. Helps mitigate
        // amplification attacks performed by spoofing source addresses.
        let mut new_path = if remote.is_ipv4() && remote.ip() == self.path.remote.ip() {
            PathData::from_previous(remote, &self.path, now)
        } else {
            let peer_max_udp_payload_size =
                u16::try_from(self.peer_params.max_udp_payload_size.into_inner())
                    .unwrap_or(u16::MAX);
            PathData::new(
                remote,
                self.allow_mtud,
                Some(peer_max_udp_payload_size),
                now,
                false,
                &self.config,
            )
        };
        new_path.challenge = Some(self.rng.gen());
        new_path.challenge_pending = true;
        let prev_pto = self.pto(SpaceId::Data);

        let mut prev = mem::replace(&mut self.path, new_path);
        // Don't clobber the original path if the previous one hasn't been validated yet
        if prev.challenge.is_none() {
            prev.challenge = Some(self.rng.gen());
            prev.challenge_pending = true;
            // We haven't updated the remote CID yet, this captures the remote CID we were using on
            // the previous path.
            self.prev_path = Some((self.rem_cids.active(), prev));
        }

        self.timers.set(
            Timer::PathValidation,
            now + 3 * cmp::max(self.pto(SpaceId::Data), prev_pto),
        );
    }

    /// Handle a change in the local address, i.e. an active migration
    pub fn local_address_changed(&mut self) {
        self.update_rem_cid();
        self.ping();
    }

    /// Switch to a previously unused remote connection ID, if possible
    fn update_rem_cid(&mut self) {
        let (reset_token, retired) = match self.rem_cids.next() {
            Some(x) => x,
            None => return,
        };

        // Retire the current remote CID and any CIDs we had to skip.
        self.spaces[SpaceId::Data]
            .pending
            .retire_cids
            .extend(retired);
        self.set_reset_token(reset_token);
    }

    fn set_reset_token(&mut self, reset_token: ResetToken) {
        self.endpoint_events
            .push_back(EndpointEventInner::ResetToken(
                self.path.remote,
                reset_token,
            ));
        self.peer_params.stateless_reset_token = Some(reset_token);
    }

    /// Issue an initial set of connection IDs to the peer upon connection
    fn issue_first_cids(&mut self, now: Instant) {
        if self.local_cid_state.cid_len() == 0 {
            return;
        }

        // Subtract 1 to account for the CID we supplied while handshaking
        let n = self.peer_params.issue_cids_limit() - 1;
        self.endpoint_events
            .push_back(EndpointEventInner::NeedIdentifiers(now, n));
    }

    fn populate_packet(
        &mut self,
        now: Instant,
        space_id: SpaceId,
        buf: &mut Vec<u8>,
        max_size: usize,
        pn: u64,
    ) -> SentFrames {
        let mut sent = SentFrames::default();
        let space = &mut self.spaces[space_id];
        let is_0rtt = space_id == SpaceId::Data && space.crypto.is_none();
        space.pending_acks.maybe_ack_non_eliciting();

        // HANDSHAKE_DONE
        if !is_0rtt && mem::replace(&mut space.pending.handshake_done, false) {
            buf.write(frame::Type::HANDSHAKE_DONE);
            sent.retransmits.get_or_create().handshake_done = true;
            // This is just a u8 counter and the frame is typically just sent once
            self.stats.frame_tx.handshake_done =
                self.stats.frame_tx.handshake_done.saturating_add(1);
        }

        // PING
        if mem::replace(&mut space.ping_pending, false) {
            trace!("PING");
            buf.write(frame::Type::PING);
            sent.non_retransmits = true;
            self.stats.frame_tx.ping += 1;
        }

        // IMMEDIATE_ACK
        if mem::replace(&mut space.immediate_ack_pending, false) {
            trace!("IMMEDIATE_ACK");
            buf.write(frame::Type::IMMEDIATE_ACK);
            sent.non_retransmits = true;
            self.stats.frame_tx.immediate_ack += 1;
        }

        // ACK
        if space.pending_acks.can_send() {
            Self::populate_acks(
                now,
                self.receiving_ecn,
                &mut sent,
                space,
                buf,
                &mut self.stats,
            );
        }

        // ACK_FREQUENCY
        if mem::replace(&mut space.pending.ack_frequency, false) {
            let sequence_number = self.ack_frequency.next_sequence_number();

            // Safe to unwrap because this is always provided when ACK frequency is enabled
            let config = self.config.ack_frequency_config.as_ref().unwrap();

            // Ensure the delay is within bounds to avoid a PROTOCOL_VIOLATION error
            let max_ack_delay = self.ack_frequency.candidate_max_ack_delay(
                self.path.rtt.get(),
                config,
                &self.peer_params,
            );

            trace!(?max_ack_delay, "ACK_FREQUENCY");

            frame::AckFrequency {
                sequence: sequence_number,
                ack_eliciting_threshold: config.ack_eliciting_threshold,
                request_max_ack_delay: max_ack_delay.as_micros().try_into().unwrap_or(VarInt::MAX),
                reordering_threshold: config.reordering_threshold,
            }
            .encode(buf);

            sent.retransmits.get_or_create().ack_frequency = true;

            self.ack_frequency.ack_frequency_sent(pn, max_ack_delay);
            self.stats.frame_tx.ack_frequency += 1;
        }

        // PATH_CHALLENGE
        if buf.len() + 9 < max_size && space_id == SpaceId::Data {
            // Transmit challenges with every outgoing frame on an unvalidated path
            if let Some(token) = self.path.challenge {
                // But only send a packet solely for that purpose at most once
                self.path.challenge_pending = false;
                sent.non_retransmits = true;
                sent.requires_padding = true;
                trace!("PATH_CHALLENGE {:08x}", token);
                buf.write(frame::Type::PATH_CHALLENGE);
                buf.write(token);
                self.stats.frame_tx.path_challenge += 1;
            }
        }

        // PATH_RESPONSE
        if buf.len() + 9 < max_size && space_id == SpaceId::Data {
            if let Some(token) = self.path_responses.pop_on_path(&self.path.remote) {
                sent.non_retransmits = true;
                sent.requires_padding = true;
                trace!("PATH_RESPONSE {:08x}", token);
                buf.write(frame::Type::PATH_RESPONSE);
                buf.write(token);
                self.stats.frame_tx.path_response += 1;
            }
        }

        // CRYPTO
        while buf.len() + frame::Crypto::SIZE_BOUND < max_size && !is_0rtt {
            let mut frame = match space.pending.crypto.pop_front() {
                Some(x) => x,
                None => break,
            };

            // Calculate the maximum amount of crypto data we can store in the buffer.
            // Since the offset is known, we can reserve the exact size required to encode it.
            // For length we reserve 2bytes which allows to encode up to 2^14,
            // which is more than what fits into normally sized QUIC frames.
            let max_crypto_data_size = max_size
                - buf.len()
                - 1 // Frame Type
                - VarInt::size(unsafe { VarInt::from_u64_unchecked(frame.offset) })
                - 2; // Maximum encoded length for frame size, given we send less than 2^14 bytes

            let len = frame
                .data
                .len()
                .min(2usize.pow(14) - 1)
                .min(max_crypto_data_size);

            let data = frame.data.split_to(len);
            let truncated = frame::Crypto {
                offset: frame.offset,
                data,
            };
            trace!(
                "CRYPTO: off {} len {}",
                truncated.offset,
                truncated.data.len()
            );
            truncated.encode(buf);
            self.stats.frame_tx.crypto += 1;
            sent.retransmits.get_or_create().crypto.push_back(truncated);
            if !frame.data.is_empty() {
                frame.offset += len as u64;
                space.pending.crypto.push_front(frame);
            }
        }

        if space_id == SpaceId::Data {
            self.streams.write_control_frames(
                buf,
                &mut space.pending,
                &mut sent.retransmits,
                &mut self.stats.frame_tx,
                max_size,
            );
        }

        // NEW_CONNECTION_ID
        while buf.len() + 44 < max_size {
            let issued = match space.pending.new_cids.pop() {
                Some(x) => x,
                None => break,
            };
            trace!(
                sequence = issued.sequence,
                id = %issued.id,
                "NEW_CONNECTION_ID"
            );
            frame::NewConnectionId {
                sequence: issued.sequence,
                retire_prior_to: self.local_cid_state.retire_prior_to(),
                id: issued.id,
                reset_token: issued.reset_token,
            }
            .encode(buf);
            sent.retransmits.get_or_create().new_cids.push(issued);
            self.stats.frame_tx.new_connection_id += 1;
        }

        // RETIRE_CONNECTION_ID
        while buf.len() + frame::RETIRE_CONNECTION_ID_SIZE_BOUND < max_size {
            let seq = match space.pending.retire_cids.pop() {
                Some(x) => x,
                None => break,
            };
            trace!(sequence = seq, "RETIRE_CONNECTION_ID");
            buf.write(frame::Type::RETIRE_CONNECTION_ID);
            buf.write_var(seq);
            sent.retransmits.get_or_create().retire_cids.push(seq);
            self.stats.frame_tx.retire_connection_id += 1;
        }

        // DATAGRAM
        let mut sent_datagrams = false;
        while buf.len() + Datagram::SIZE_BOUND < max_size && space_id == SpaceId::Data {
            match self.datagrams.write(buf, max_size) {
                true => {
                    sent_datagrams = true;
                    sent.non_retransmits = true;
                    self.stats.frame_tx.datagram += 1;
                }
                false => break,
            }
        }
        if self.datagrams.send_blocked && sent_datagrams {
            self.events.push_back(Event::DatagramsUnblocked);
            self.datagrams.send_blocked = false;
        }

        // STREAM
        if space_id == SpaceId::Data {
            sent.stream_frames = self.streams.write_stream_frames(buf, max_size);
            self.stats.frame_tx.stream += sent.stream_frames.len() as u64;
        }

        sent
    }

    /// Write pending ACKs into a buffer
    ///
    /// This method assumes ACKs are pending, and should only be called if
    /// `!PendingAcks::ranges().is_empty()` returns `true`.
    fn populate_acks(
        now: Instant,
        receiving_ecn: bool,
        sent: &mut SentFrames,
        space: &mut PacketSpace,
        buf: &mut Vec<u8>,
        stats: &mut ConnectionStats,
    ) {
        debug_assert!(!space.pending_acks.ranges().is_empty());

        // 0-RTT packets must never carry acks (which would have to be of handshake packets)
        debug_assert!(space.crypto.is_some(), "tried to send ACK in 0-RTT");
        let ecn = if receiving_ecn {
            Some(&space.ecn_counters)
        } else {
            None
        };
        sent.largest_acked = space.pending_acks.ranges().max();

        let delay_micros = space.pending_acks.ack_delay(now).as_micros() as u64;

        // TODO: This should come from `TransportConfig` if that gets configurable.
        let ack_delay_exp = TransportParameters::default().ack_delay_exponent;
        let delay = delay_micros >> ack_delay_exp.into_inner();

        trace!(
            "ACK {:?}, Delay = {}us",
            space.pending_acks.ranges(),
            delay_micros
        );

        frame::Ack::encode(delay as _, space.pending_acks.ranges(), ecn, buf);
        stats.frame_tx.acks += 1;
    }

    fn close_common(&mut self) {
        trace!("connection closed");
        for &timer in &Timer::VALUES {
            self.timers.stop(timer);
        }
    }

    fn set_close_timer(&mut self, now: Instant) {
        self.timers
            .set(Timer::Close, now + 3 * self.pto(self.highest_space));
    }

    /// Handle transport parameters received from the peer
    fn handle_peer_params(&mut self, params: TransportParameters) -> Result<(), TransportError> {
        if Some(self.orig_rem_cid) != params.initial_src_cid
            || (self.side.is_client()
                && (Some(self.initial_dst_cid) != params.original_dst_cid
                    || self.retry_src_cid != params.retry_src_cid))
        {
            return Err(TransportError::TRANSPORT_PARAMETER_ERROR(
                "CID authentication failure",
            ));
        }

        self.set_peer_params(params);

        Ok(())
    }

    fn set_peer_params(&mut self, params: TransportParameters) {
        self.streams.set_params(&params);
        self.idle_timeout = match (self.config.max_idle_timeout, params.max_idle_timeout) {
            (None, VarInt(0)) => None,
            (None, x) => Some(x),
            (Some(x), VarInt(0)) => Some(x),
            (Some(x), y) => Some(cmp::min(x, y)),
        };
        if let Some(ref info) = params.preferred_address {
            self.rem_cids.insert(frame::NewConnectionId {
                sequence: 1,
                id: info.connection_id,
                reset_token: info.stateless_reset_token,
                retire_prior_to: 0,
            }).expect("preferred address CID is the first received, and hence is guaranteed to be legal");
        }
        self.ack_frequency.peer_max_ack_delay = get_max_ack_delay(&params);
        self.peer_params = params;
        self.path.mtud.on_peer_max_udp_payload_size_received(
            u16::try_from(self.peer_params.max_udp_payload_size.into_inner()).unwrap_or(u16::MAX),
        );
    }

    fn decrypt_packet(
        &mut self,
        now: Instant,
        packet: &mut Packet,
    ) -> Result<Option<u64>, Option<TransportError>> {
        let result = packet_crypto::decrypt_packet_body(
            packet,
            &self.spaces,
            self.zero_rtt_crypto.as_ref(),
            self.key_phase,
            self.prev_crypto.as_ref(),
            self.next_crypto.as_ref(),
        )?;

        let result = match result {
            Some(r) => r,
            None => return Ok(None),
        };

        if result.outgoing_key_update_acked {
            if let Some(prev) = self.prev_crypto.as_mut() {
                prev.end_packet = Some((result.number, now));
                self.set_key_discard_timer(now, packet.header.space());
            }
        }

        if result.incoming_key_update {
            trace!("key update authenticated");
            self.update_keys(Some((result.number, now)), true);
            self.set_key_discard_timer(now, packet.header.space());
        }

        Ok(Some(result.number))
    }

    fn update_keys(&mut self, end_packet: Option<(u64, Instant)>, remote: bool) {
        trace!("executing key update");
        // Generate keys for the key phase after the one we're switching to, store them in
        // `next_crypto`, make the contents of `next_crypto` current, and move the current keys into
        // `prev_crypto`.
        let new = self
            .crypto
            .next_1rtt_keys()
            .expect("only called for `Data` packets");
        self.key_phase_size = new
            .local
            .confidentiality_limit()
            .saturating_sub(KEY_UPDATE_MARGIN);
        let old = mem::replace(
            &mut self.spaces[SpaceId::Data]
                .crypto
                .as_mut()
                .unwrap() // safe because update_keys() can only be triggered by short packets
                .packet,
            mem::replace(self.next_crypto.as_mut().unwrap(), new),
        );
        self.spaces[SpaceId::Data].sent_with_keys = 0;
        self.prev_crypto = Some(PrevCrypto {
            crypto: old,
            end_packet,
            update_unacked: remote,
        });
        self.key_phase = !self.key_phase;
    }

    fn peer_supports_ack_frequency(&self) -> bool {
        self.peer_params.min_ack_delay.is_some()
    }

    /// Send an IMMEDIATE_ACK frame to the remote endpoint
    ///
    /// According to the spec, this will result in an error if the remote endpoint does not support
    /// the Acknowledgement Frequency extension
    pub(crate) fn immediate_ack(&mut self) {
        self.spaces[self.highest_space].immediate_ack_pending = true;
    }

    /// Decodes a packet, returning its decrypted payload, so it can be inspected in tests
    #[cfg(test)]
    pub(crate) fn decode_packet(&self, event: &ConnectionEvent) -> Option<Vec<u8>> {
        let (first_decode, remaining) = match &event.0 {
            ConnectionEventInner::Datagram(DatagramConnectionEvent {
                first_decode,
                remaining,
                ..
            }) => (first_decode, remaining),
            _ => return None,
        };

        if remaining.is_some() {
            panic!("Packets should never be coalesced in tests");
        }

        let decrypted_header = packet_crypto::unprotect_header(
            first_decode.clone(),
            &self.spaces,
            self.zero_rtt_crypto.as_ref(),
            self.peer_params.stateless_reset_token,
        )?;

        let mut packet = decrypted_header.packet?;
        packet_crypto::decrypt_packet_body(
            &mut packet,
            &self.spaces,
            self.zero_rtt_crypto.as_ref(),
            self.key_phase,
            self.prev_crypto.as_ref(),
            self.next_crypto.as_ref(),
        )
        .ok()?;

        Some(packet.payload.to_vec())
    }

    /// The number of bytes of packets containing retransmittable frames that have not been
    /// acknowledged or declared lost.
    #[cfg(test)]
    pub(crate) fn bytes_in_flight(&self) -> u64 {
        self.path.in_flight.bytes
    }

    /// Number of bytes worth of non-ack-only packets that may be sent
    #[cfg(test)]
    pub(crate) fn congestion_window(&self) -> u64 {
        self.path
            .congestion
            .window()
            .saturating_sub(self.path.in_flight.bytes)
    }

    /// Whether no timers but keepalive, idle, rtt and pushnewcid are running
    #[cfg(test)]
    pub(crate) fn is_idle(&self) -> bool {
        Timer::VALUES
            .iter()
            .filter(|&&t| t != Timer::KeepAlive && t != Timer::PushNewCid)
            .filter_map(|&t| Some((t, self.timers.get(t)?)))
            .min_by_key(|&(_, time)| time)
            .map_or(true, |(timer, _)| timer == Timer::Idle)
    }

    /// Total number of outgoing packets that have been deemed lost
    #[cfg(test)]
    pub(crate) fn lost_packets(&self) -> u64 {
        self.lost_packets
    }

    /// Whether explicit congestion notification is in use on outgoing packets.
    #[cfg(test)]
    pub(crate) fn using_ecn(&self) -> bool {
        self.path.sending_ecn
    }

    /// The number of received bytes in the current path
    #[cfg(test)]
    pub(crate) fn total_recvd(&self) -> u64 {
        self.path.total_recvd
    }

    #[cfg(test)]
    pub(crate) fn active_local_cid_seq(&self) -> (u64, u64) {
        self.local_cid_state.active_seq()
    }

    /// Instruct the peer to replace previously issued CIDs by sending a NEW_CONNECTION_ID frame
    /// with updated `retire_prior_to` field set to `v`
    #[cfg(test)]
    pub(crate) fn rotate_local_cid(&mut self, v: u64, now: Instant) {
        let n = self.local_cid_state.assign_retire_seq(v);
        self.endpoint_events
            .push_back(EndpointEventInner::NeedIdentifiers(now, n));
    }

    /// Check the current active remote CID sequence
    #[cfg(test)]
    pub(crate) fn active_rem_cid_seq(&self) -> u64 {
        self.rem_cids.active_seq()
    }

    /// Returns the detected maximum udp payload size for the current path
    #[cfg(test)]
    pub(crate) fn path_mtu(&self) -> u16 {
        self.path.current_mtu()
    }

    /// Whether we have 1-RTT data to send
    ///
    /// See also `self.space(SpaceId::Data).can_send()`
    fn can_send_1rtt(&self, max_size: usize) -> bool {
        self.streams.can_send_stream_data()
            || self.path.challenge_pending
            || self
                .prev_path
                .as_ref()
                .map_or(false, |(_, x)| x.challenge_pending)
            || !self.path_responses.is_empty()
            || self
                .datagrams
                .outgoing
                .front()
                .map_or(false, |x| x.size(true) <= max_size)
    }

    /// Update counters to account for a packet becoming acknowledged, lost, or abandoned
    fn remove_in_flight(&mut self, pn: u64, packet: &SentPacket) {
        // Visit known paths from newest to oldest to find the one `pn` was sent on
        for path in [&mut self.path]
            .into_iter()
            .chain(self.prev_path.as_mut().map(|(_, data)| data))
        {
            if path.remove_in_flight(pn, packet) {
                return;
            }
        }
    }

    /// Terminate the connection instantly, without sending a close packet
    fn kill(&mut self, reason: ConnectionError) {
        self.close_common();
        self.error = Some(reason);
        self.state = State::Drained;
        self.endpoint_events.push_back(EndpointEventInner::Drained);
    }

    /// Storage size required for the largest packet known to be supported by the current path
    ///
    /// Buffers passed to [`Connection::poll_transmit`] should be at least this large.
    pub fn current_mtu(&self) -> u16 {
        self.path.current_mtu()
    }

    /// Size of non-frame data for a 1-RTT packet
    ///
    /// Quantifies space consumed by the QUIC header and AEAD tag. All other bytes in a packet are
    /// frames. Changes if the length of the remote connection ID changes, which is expected to be
    /// rare. If `pn` is specified, may additionally change unpredictably due to variations in
    /// latency and packet loss.
    fn predict_1rtt_overhead(&self, pn: Option<u64>) -> usize {
        let pn_len = match pn {
            Some(pn) => PacketNumber::new(
                pn,
                self.spaces[SpaceId::Data].largest_acked_packet.unwrap_or(0),
            )
            .len(),
            // Upper bound
            None => 4,
        };

        // 1 byte for flags
        1 + self.rem_cids.active().len() + pn_len + self.tag_len_1rtt()
    }

    fn tag_len_1rtt(&self) -> usize {
        let key = match self.spaces[SpaceId::Data].crypto.as_ref() {
            Some(crypto) => Some(&*crypto.packet.local),
            None => self.zero_rtt_crypto.as_ref().map(|x| &*x.packet),
        };
        // If neither Data nor 0-RTT keys are available, make a reasonable tag length guess. As of
        // this writing, all QUIC cipher suites use 16-byte tags. We could return `None` instead,
        // but that would needlessly prevent sending datagrams during 0-RTT.
        key.map_or(16, |x| x.tag_len())
    }
}

impl fmt::Debug for Connection {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Connection")
            .field("handshake_cid", &self.handshake_cid)
            .finish()
    }
}

/// Reasons why a connection might be lost
#[derive(Debug, Error, Clone, PartialEq, Eq)]
pub enum ConnectionError {
    /// The peer doesn't implement any supported version
    #[error("peer doesn't implement any supported version")]
    VersionMismatch,
    /// The peer violated the QUIC specification as understood by this implementation
    #[error(transparent)]
    TransportError(#[from] TransportError),
    /// The peer's QUIC stack aborted the connection automatically
    #[error("aborted by peer: {0}")]
    ConnectionClosed(frame::ConnectionClose),
    /// The peer closed the connection
    #[error("closed by peer: {0}")]
    ApplicationClosed(frame::ApplicationClose),
    /// The peer is unable to continue processing this connection, usually due to having restarted
    #[error("reset by peer")]
    Reset,
    /// Communication with the peer has lapsed for longer than the negotiated idle timeout
    ///
    /// If neither side is sending keep-alives, a connection will time out after a long enough idle
    /// period even if the peer is still reachable. See also [`TransportConfig::max_idle_timeout()`]
    /// and [`TransportConfig::keep_alive_interval()`].
    #[error("timed out")]
    TimedOut,
    /// The local application closed the connection
    #[error("closed")]
    LocallyClosed,
    /// The connection could not be created because not enough of the CID space is available
    ///
    /// Try using longer connection IDs.
    #[error("CIDs exhausted")]
    CidsExhausted,
}

impl From<Close> for ConnectionError {
    fn from(x: Close) -> Self {
        match x {
            Close::Connection(reason) => Self::ConnectionClosed(reason),
            Close::Application(reason) => Self::ApplicationClosed(reason),
        }
    }
}

// For compatibility with API consumers
impl From<ConnectionError> for io::Error {
    fn from(x: ConnectionError) -> Self {
        use self::ConnectionError::*;
        let kind = match x {
            TimedOut => io::ErrorKind::TimedOut,
            Reset => io::ErrorKind::ConnectionReset,
            ApplicationClosed(_) | ConnectionClosed(_) => io::ErrorKind::ConnectionAborted,
            TransportError(_) | VersionMismatch | LocallyClosed | CidsExhausted => {
                io::ErrorKind::Other
            }
        };
        Self::new(kind, x)
    }
}

#[allow(unreachable_pub)] // fuzzing only
#[derive(Clone)]
pub enum State {
    Handshake(state::Handshake),
    Established,
    Closed(state::Closed),
    Draining,
    /// Waiting for application to call close so we can dispose of the resources
    Drained,
}

impl State {
    fn closed<R: Into<Close>>(reason: R) -> Self {
        Self::Closed(state::Closed {
            reason: reason.into(),
        })
    }

    fn is_handshake(&self) -> bool {
        matches!(*self, Self::Handshake(_))
    }

    fn is_established(&self) -> bool {
        matches!(*self, Self::Established)
    }

    fn is_closed(&self) -> bool {
        matches!(*self, Self::Closed(_) | Self::Draining | Self::Drained)
    }

    fn is_drained(&self) -> bool {
        matches!(*self, Self::Drained)
    }
}

mod state {
    use super::*;

    #[allow(unreachable_pub)] // fuzzing only
    #[derive(Clone)]
    pub struct Handshake {
        /// Whether the remote CID has been set by the peer yet
        ///
        /// Always set for servers
        pub(super) rem_cid_set: bool,
        /// Stateless retry token received in the first Initial by a server.
        ///
        /// Must be present in every Initial. Always empty for clients.
        pub(super) expected_token: Bytes,
        /// First cryptographic message
        ///
        /// Only set for clients
        pub(super) client_hello: Option<Bytes>,
    }

    #[allow(unreachable_pub)] // fuzzing only
    #[derive(Clone)]
    pub struct Closed {
        pub(super) reason: Close,
    }
}

/// Events of interest to the application
#[derive(Debug)]
pub enum Event {
    /// The connection's handshake data is ready
    HandshakeDataReady,
    /// The connection was successfully established
    Connected,
    /// The connection was lost
    ///
    /// Emitted if the peer closes the connection or an error is encountered.
    ConnectionLost {
        /// Reason that the connection was closed
        reason: ConnectionError,
    },
    /// Stream events
    Stream(StreamEvent),
    /// One or more application datagrams have been received
    DatagramReceived,
    /// One or more application datagrams have been sent after blocking
    DatagramsUnblocked,
}

fn instant_saturating_sub(x: Instant, y: Instant) -> Duration {
    if x > y {
        x - y
    } else {
        Duration::new(0, 0)
    }
}

fn get_max_ack_delay(params: &TransportParameters) -> Duration {
    Duration::from_micros(params.max_ack_delay.0 * 1000)
}

// Prevents overflow and improves behavior in extreme circumstances
const MAX_BACKOFF_EXPONENT: u32 = 16;
// Minimal remaining size to allow packet coalescing
const MIN_PACKET_SPACE: usize = 40;
/// The maximum amount of datagrams that are sent in a single transmit
///
/// This can be lower than the maximum platform capabilities, to avoid excessive
/// memory allocations when calling `poll_transmit()`. Benchmarks have shown
/// that numbers around 10 are a good compromise.
const MAX_TRANSMIT_SEGMENTS: usize = 10;

/// Perform key updates this many packets before the AEAD confidentiality limit.
///
/// Chosen arbitrarily, intended to be large enough to prevent spurious connection loss.
const KEY_UPDATE_MARGIN: u64 = 10_000;

#[derive(Default)]
struct SentFrames {
    retransmits: ThinRetransmits,
    largest_acked: Option<u64>,
    stream_frames: StreamMetaVec,
    /// Whether the packet contains non-retransmittable frames (like datagrams)
    non_retransmits: bool,
    requires_padding: bool,
}

impl SentFrames {
    /// Returns whether the packet contains only ACKs
    fn is_ack_only(&self, streams: &StreamsState) -> bool {
        self.largest_acked.is_some()
            && !self.non_retransmits
            && self.stream_frames.is_empty()
            && self.retransmits.is_empty(streams)
    }
}