1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use std::any::Any;
use std::sync::Arc;
use std::time::{Duration, Instant};

use super::{Controller, ControllerFactory};
use crate::connection::RttEstimator;
use std::cmp;

/// CUBIC Constants.
///
/// These are recommended value in RFC8312.
const BETA_CUBIC: f64 = 0.7;

const C: f64 = 0.4;

/// CUBIC State Variables.
///
/// We need to keep those variables across the connection.
/// k, w_max are described in the RFC.
#[derive(Debug, Default, Clone)]
pub struct State {
    k: f64,

    w_max: f64,

    // Store cwnd increment during congestion avoidance.
    cwnd_inc: u64,
}

/// CUBIC Functions.
///
/// Note that these calculations are based on a count of cwnd as bytes,
/// not packets.
/// Unit of t (duration) and RTT are based on seconds (f64).
impl State {
    // K = cbrt(w_max * (1 - beta_cubic) / C) (Eq. 2)
    fn cubic_k(&self, max_datagram_size: u64) -> f64 {
        let w_max = self.w_max / max_datagram_size as f64;
        (w_max * (1.0 - BETA_CUBIC) / C).cbrt()
    }

    // W_cubic(t) = C * (t - K)^3 - w_max (Eq. 1)
    fn w_cubic(&self, t: Duration, max_datagram_size: u64) -> f64 {
        let w_max = self.w_max / max_datagram_size as f64;

        (C * (t.as_secs_f64() - self.k).powi(3) + w_max) * max_datagram_size as f64
    }

    // W_est(t) = w_max * beta_cubic + 3 * (1 - beta_cubic) / (1 + beta_cubic) *
    // (t / RTT) (Eq. 4)
    fn w_est(&self, t: Duration, rtt: Duration, max_datagram_size: u64) -> f64 {
        let w_max = self.w_max / max_datagram_size as f64;
        (w_max * BETA_CUBIC
            + 3.0 * (1.0 - BETA_CUBIC) / (1.0 + BETA_CUBIC) * t.as_secs_f64() / rtt.as_secs_f64())
            * max_datagram_size as f64
    }
}

/// The RFC8312 congestion controller, as widely used for TCP
#[derive(Debug, Clone)]
pub struct Cubic {
    config: Arc<CubicConfig>,
    /// Maximum number of bytes in flight that may be sent.
    window: u64,
    /// Slow start threshold in bytes. When the congestion window is below ssthresh, the mode is
    /// slow start and the window grows by the number of bytes acknowledged.
    ssthresh: u64,
    /// The time when QUIC first detects a loss, causing it to enter recovery. When a packet sent
    /// after this time is acknowledged, QUIC exits recovery.
    recovery_start_time: Option<Instant>,
    cubic_state: State,
}

impl Cubic {
    /// Construct a state using the given `config` and current time `now`
    pub fn new(config: Arc<CubicConfig>, _now: Instant) -> Self {
        Self {
            window: config.initial_window,
            ssthresh: u64::MAX,
            recovery_start_time: None,
            config,
            cubic_state: Default::default(),
        }
    }
}

impl Controller for Cubic {
    fn on_ack(
        &mut self,
        now: Instant,
        sent: Instant,
        bytes: u64,
        app_limited: bool,
        rtt: &RttEstimator,
    ) {
        if app_limited
            || self
                .recovery_start_time
                .map(|recovery_start_time| sent <= recovery_start_time)
                .unwrap_or(false)
        {
            return;
        }

        if self.window < self.ssthresh {
            // Slow start
            self.window += bytes;
        } else {
            // Congestion avoidance.
            let ca_start_time;

            match self.recovery_start_time {
                Some(t) => ca_start_time = t,
                None => {
                    // When we come here without congestion_event() triggered,
                    // initialize congestion_recovery_start_time, w_max and k.
                    ca_start_time = now;
                    self.recovery_start_time = Some(now);

                    self.cubic_state.w_max = self.window as f64;
                    self.cubic_state.k = 0.0;
                }
            }

            let t = now - ca_start_time;

            // w_cubic(t + rtt)
            let w_cubic = self
                .cubic_state
                .w_cubic(t + rtt.get(), self.config.max_datagram_size);

            // w_est(t)
            let w_est = self
                .cubic_state
                .w_est(t, rtt.get(), self.config.max_datagram_size);

            let mut cubic_cwnd = self.window;

            if w_cubic < w_est {
                // TCP friendly region.
                cubic_cwnd = cmp::max(cubic_cwnd, w_est as u64);
            } else if cubic_cwnd < w_cubic as u64 {
                // Concave region or convex region use same increment.
                let cubic_inc = (w_cubic - cubic_cwnd as f64) / cubic_cwnd as f64
                    * self.config.max_datagram_size as f64;

                cubic_cwnd += cubic_inc as u64;
            }

            // Update the increment and increase cwnd by MSS.
            self.cubic_state.cwnd_inc += cubic_cwnd - self.window;

            // cwnd_inc can be more than 1 MSS in the late stage of max probing.
            // however RFC9002 §7.3.3 (Congestion Avoidance) limits
            // the increase of cwnd to 1 max_datagram_size per cwnd acknowledged.
            if self.cubic_state.cwnd_inc as u64 >= self.config.max_datagram_size {
                self.window += self.config.max_datagram_size;
                self.cubic_state.cwnd_inc = 0;
            }
        }
    }

    fn on_congestion_event(
        &mut self,
        now: Instant,
        sent: Instant,
        is_persistent_congestion: bool,
        _lost_bytes: u64,
    ) {
        if self
            .recovery_start_time
            .map(|recovery_start_time| sent <= recovery_start_time)
            .unwrap_or(false)
        {
            return;
        }

        self.recovery_start_time = Some(now);

        // Fast convergence
        #[allow(clippy::branches_sharing_code)]
        // https://github.com/rust-lang/rust-clippy/issues/7198
        if (self.window as f64) < self.cubic_state.w_max {
            self.cubic_state.w_max = self.window as f64 * (1.0 + BETA_CUBIC) / 2.0;
        } else {
            self.cubic_state.w_max = self.window as f64;
        }

        self.ssthresh = cmp::max(
            (self.cubic_state.w_max * BETA_CUBIC) as u64,
            self.config.minimum_window,
        );
        self.window = self.ssthresh;
        self.cubic_state.k = self.cubic_state.cubic_k(self.config.max_datagram_size);

        self.cubic_state.cwnd_inc = (self.cubic_state.cwnd_inc as f64 * BETA_CUBIC) as u64;

        if is_persistent_congestion {
            self.recovery_start_time = None;
            self.cubic_state.w_max = self.window as f64;

            // 4.7 Timeout - reduce ssthresh based on BETA_CUBIC
            self.ssthresh = cmp::max(
                (self.window as f64 * BETA_CUBIC) as u64,
                self.config.minimum_window,
            );

            self.cubic_state.cwnd_inc = 0;

            self.window = self.config.minimum_window;
        }
    }

    fn window(&self) -> u64 {
        self.window
    }

    fn clone_box(&self) -> Box<dyn Controller> {
        Box::new(self.clone())
    }

    fn initial_window(&self) -> u64 {
        self.config.initial_window
    }

    fn into_any(self: Box<Self>) -> Box<dyn Any> {
        self
    }
}

/// Configuration for the `Cubic` congestion controller
#[derive(Debug, Clone)]
pub struct CubicConfig {
    max_datagram_size: u64,
    initial_window: u64,
    minimum_window: u64,
}

impl CubicConfig {
    /// The sender’s maximum UDP payload size. Does not include UDP or IP overhead.
    ///
    /// Used for calculating initial and minimum congestion windows.
    pub fn max_datagram_size(&mut self, value: u64) -> &mut Self {
        self.max_datagram_size = value;
        self
    }

    /// Default limit on the amount of outstanding data in bytes.
    ///
    /// Recommended value: `min(10 * max_datagram_size, max(2 * max_datagram_size, 14720))`
    pub fn initial_window(&mut self, value: u64) -> &mut Self {
        self.initial_window = value;
        self
    }

    /// Default minimum congestion window.
    ///
    /// Recommended value: `2 * max_datagram_size`.
    pub fn minimum_window(&mut self, value: u64) -> &mut Self {
        self.minimum_window = value;
        self
    }
}

impl Default for CubicConfig {
    fn default() -> Self {
        const MAX_DATAGRAM_SIZE: u64 = 1232;
        Self {
            max_datagram_size: MAX_DATAGRAM_SIZE,
            initial_window: 14720.max(2 * MAX_DATAGRAM_SIZE).min(10 * MAX_DATAGRAM_SIZE),
            minimum_window: 2 * MAX_DATAGRAM_SIZE,
        }
    }
}

impl ControllerFactory for Arc<CubicConfig> {
    fn build(&self, now: Instant) -> Box<dyn Controller> {
        Box::new(Cubic::new(self.clone(), now))
    }
}