1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
use bytes::Bytes;
use thiserror::Error;
use crate::{connection::send_buffer::SendBuffer, frame, VarInt};
#[derive(Debug)]
pub(super) struct Send {
pub(super) max_data: u64,
pub(super) state: SendState,
pub(super) pending: SendBuffer,
pub(super) priority: i32,
/// Whether a frame containing a FIN bit must be transmitted, even if we don't have any new data
pub(super) fin_pending: bool,
/// Whether this stream is in the `connection_blocked` list of `Streams`
pub(super) connection_blocked: bool,
/// The reason the peer wants us to stop, if `STOP_SENDING` was received
pub(super) stop_reason: Option<VarInt>,
}
impl Send {
pub(super) fn new(max_data: VarInt) -> Self {
Self {
max_data: max_data.into(),
state: SendState::Ready,
pending: SendBuffer::new(),
priority: 0,
fin_pending: false,
connection_blocked: false,
stop_reason: None,
}
}
/// Whether the stream has been reset
pub(super) fn is_reset(&self) -> bool {
matches!(self.state, SendState::ResetSent { .. })
}
pub(super) fn finish(&mut self) -> Result<(), FinishError> {
if let Some(error_code) = self.stop_reason {
Err(FinishError::Stopped(error_code))
} else if self.state == SendState::Ready {
self.state = SendState::DataSent {
finish_acked: false,
};
self.fin_pending = true;
Ok(())
} else {
Err(FinishError::UnknownStream)
}
}
pub(super) fn write<S: BytesSource>(
&mut self,
source: &mut S,
limit: u64,
) -> Result<Written, WriteError> {
if !self.is_writable() {
return Err(WriteError::UnknownStream);
}
if let Some(error_code) = self.stop_reason {
return Err(WriteError::Stopped(error_code));
}
let budget = self.max_data - self.pending.offset();
if budget == 0 {
return Err(WriteError::Blocked);
}
let mut limit = limit.min(budget) as usize;
let mut result = Written::default();
loop {
let (chunk, chunks_consumed) = source.pop_chunk(limit);
result.chunks += chunks_consumed;
result.bytes += chunk.len();
if chunk.is_empty() {
break;
}
limit -= chunk.len();
self.pending.write(chunk);
}
Ok(result)
}
/// Update stream state due to a reset sent by the local application
pub(super) fn reset(&mut self) {
use SendState::*;
if let DataSent { .. } | Ready = self.state {
self.state = ResetSent;
}
}
/// Handle STOP_SENDING
///
/// Returns true if the stream was stopped due to this frame, and false
/// if it had been stopped before
pub(super) fn try_stop(&mut self, error_code: VarInt) -> bool {
if self.stop_reason.is_none() {
self.stop_reason = Some(error_code);
true
} else {
false
}
}
/// Returns whether the stream has been finished and all data has been acknowledged by the peer
pub(super) fn ack(&mut self, frame: frame::StreamMeta) -> bool {
self.pending.ack(frame.offsets);
match self.state {
SendState::DataSent {
ref mut finish_acked,
} => {
*finish_acked |= frame.fin;
*finish_acked && self.pending.is_fully_acked()
}
_ => false,
}
}
/// Handle increase to stream-level flow control limit
///
/// Returns whether the stream was unblocked
pub(super) fn increase_max_data(&mut self, offset: u64) -> bool {
if offset <= self.max_data || self.state != SendState::Ready {
return false;
}
let was_blocked = self.pending.offset() == self.max_data;
self.max_data = offset;
was_blocked
}
pub(super) fn offset(&self) -> u64 {
self.pending.offset()
}
pub(super) fn is_pending(&self) -> bool {
self.pending.has_unsent_data() || self.fin_pending
}
pub(super) fn is_writable(&self) -> bool {
matches!(self.state, SendState::Ready)
}
}
/// A [`BytesSource`] implementation for `&'a mut [Bytes]`
///
/// The type allows to dequeue [`Bytes`] chunks from an array of chunks, up to
/// a configured limit.
pub struct BytesArray<'a> {
/// The wrapped slice of `Bytes`
chunks: &'a mut [Bytes],
/// The amount of chunks consumed from this source
consumed: usize,
}
impl<'a> BytesArray<'a> {
pub fn from_chunks(chunks: &'a mut [Bytes]) -> Self {
Self {
chunks,
consumed: 0,
}
}
}
impl<'a> BytesSource for BytesArray<'a> {
fn pop_chunk(&mut self, limit: usize) -> (Bytes, usize) {
// The loop exists to skip empty chunks while still marking them as
// consumed
let mut chunks_consumed = 0;
while self.consumed < self.chunks.len() {
let chunk = &mut self.chunks[self.consumed];
if chunk.len() <= limit {
let chunk = std::mem::take(chunk);
self.consumed += 1;
chunks_consumed += 1;
if chunk.is_empty() {
continue;
}
return (chunk, chunks_consumed);
} else if limit > 0 {
let chunk = chunk.split_to(limit);
return (chunk, chunks_consumed);
} else {
break;
}
}
(Bytes::new(), chunks_consumed)
}
}
/// A [`BytesSource`] implementation for `&[u8]`
///
/// The type allows to dequeue a single [`Bytes`] chunk, which will be lazily
/// created from a reference. This allows to defer the allocation until it is
/// known how much data needs to be copied.
pub struct ByteSlice<'a> {
/// The wrapped byte slice
data: &'a [u8],
}
impl<'a> ByteSlice<'a> {
pub fn from_slice(data: &'a [u8]) -> Self {
Self { data }
}
}
impl<'a> BytesSource for ByteSlice<'a> {
fn pop_chunk(&mut self, limit: usize) -> (Bytes, usize) {
let limit = limit.min(self.data.len());
if limit == 0 {
return (Bytes::new(), 0);
}
let chunk = Bytes::from(self.data[..limit].to_owned());
self.data = &self.data[chunk.len()..];
let chunks_consumed = usize::from(self.data.is_empty());
(chunk, chunks_consumed)
}
}
/// A source of one or more buffers which can be converted into `Bytes` buffers on demand
///
/// The purpose of this data type is to defer conversion as long as possible,
/// so that no heap allocation is required in case no data is writable.
pub trait BytesSource {
/// Returns the next chunk from the source of owned chunks.
///
/// This method will consume parts of the source.
/// Calling it will yield `Bytes` elements up to the configured `limit`.
///
/// The method returns a tuple:
/// - The first item is the yielded `Bytes` element. The element will be
/// empty if the limit is zero or no more data is available.
/// - The second item returns how many complete chunks inside the source had
/// had been consumed. This can be less than 1, if a chunk inside the
/// source had been truncated in order to adhere to the limit. It can also
/// be more than 1, if zero-length chunks had been skipped.
fn pop_chunk(&mut self, limit: usize) -> (Bytes, usize);
}
/// Indicates how many bytes and chunks had been transferred in a write operation
#[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]
pub struct Written {
/// The amount of bytes which had been written
pub bytes: usize,
/// The amount of full chunks which had been written
///
/// If a chunk was only partially written, it will not be counted by this field.
pub chunks: usize,
}
/// Errors triggered while writing to a send stream
#[derive(Debug, Error, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum WriteError {
/// The peer is not able to accept additional data, or the connection is congested.
///
/// If the peer issues additional flow control credit, a [`StreamEvent::Writable`] event will
/// be generated, indicating that retrying the write might succeed.
///
/// [`StreamEvent::Writable`]: crate::StreamEvent::Writable
#[error("unable to accept further writes")]
Blocked,
/// The peer is no longer accepting data on this stream, and it has been implicitly reset. The
/// stream cannot be finished or further written to.
///
/// Carries an application-defined error code.
///
/// [`StreamEvent::Finished`]: crate::StreamEvent::Finished
#[error("stopped by peer: code {0}")]
Stopped(VarInt),
/// The stream has not been opened or has already been finished or reset
#[error("unknown stream")]
UnknownStream,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum SendState {
/// Sending new data
Ready,
/// Stream was finished; now sending retransmits only
DataSent { finish_acked: bool },
/// Sent RESET
ResetSent,
}
/// Reasons why attempting to finish a stream might fail
#[derive(Debug, Error, Clone, PartialEq, Eq)]
pub enum FinishError {
/// The peer is no longer accepting data on this stream. No
/// [`StreamEvent::Finished`] event will be emitted for this stream.
///
/// Carries an application-defined error code.
///
/// [`StreamEvent::Finished`]: crate::StreamEvent::Finished
#[error("stopped by peer: code {0}")]
Stopped(VarInt),
/// The stream has not been opened or was already finished or reset
#[error("unknown stream")]
UnknownStream,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn bytes_array() {
let full = b"Hello World 123456789 ABCDEFGHJIJKLMNOPQRSTUVWXYZ".to_owned();
for limit in 0..full.len() {
let mut chunks = [
Bytes::from_static(b""),
Bytes::from_static(b"Hello "),
Bytes::from_static(b"Wo"),
Bytes::from_static(b""),
Bytes::from_static(b"r"),
Bytes::from_static(b"ld"),
Bytes::from_static(b""),
Bytes::from_static(b" 12345678"),
Bytes::from_static(b"9 ABCDE"),
Bytes::from_static(b"F"),
Bytes::from_static(b"GHJIJKLMNOPQRSTUVWXYZ"),
];
let num_chunks = chunks.len();
let last_chunk_len = chunks[chunks.len() - 1].len();
let mut array = BytesArray::from_chunks(&mut chunks);
let mut buf = Vec::new();
let mut chunks_popped = 0;
let mut chunks_consumed = 0;
let mut remaining = limit;
loop {
let (chunk, consumed) = array.pop_chunk(remaining);
chunks_consumed += consumed;
if !chunk.is_empty() {
buf.extend_from_slice(&chunk);
remaining -= chunk.len();
chunks_popped += 1;
} else {
break;
}
}
assert_eq!(&buf[..], &full[..limit]);
if limit == full.len() {
// Full consumption of the last chunk
assert_eq!(chunks_consumed, num_chunks);
// Since there are empty chunks, we consume more than there are popped
assert_eq!(chunks_consumed, chunks_popped + 3);
} else if limit > full.len() - last_chunk_len {
// Partial consumption of the last chunk
assert_eq!(chunks_consumed, num_chunks - 1);
assert_eq!(chunks_consumed, chunks_popped + 2);
}
}
}
#[test]
fn byte_slice() {
let full = b"Hello World 123456789 ABCDEFGHJIJKLMNOPQRSTUVWXYZ".to_owned();
for limit in 0..full.len() {
let mut array = ByteSlice::from_slice(&full[..]);
let mut buf = Vec::new();
let mut chunks_popped = 0;
let mut chunks_consumed = 0;
let mut remaining = limit;
loop {
let (chunk, consumed) = array.pop_chunk(remaining);
chunks_consumed += consumed;
if !chunk.is_empty() {
buf.extend_from_slice(&chunk);
remaining -= chunk.len();
chunks_popped += 1;
} else {
break;
}
}
assert_eq!(&buf[..], &full[..limit]);
if limit != 0 {
assert_eq!(chunks_popped, 1);
} else {
assert_eq!(chunks_popped, 0);
}
if limit == full.len() {
assert_eq!(chunks_consumed, 1);
} else {
assert_eq!(chunks_consumed, 0);
}
}
}
}