1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
use std::any::Any;
use std::sync::Arc;
use std::time::{Duration, Instant};
use super::{Controller, ControllerFactory};
use crate::connection::RttEstimator;
use std::cmp;
/// CUBIC Constants.
///
/// These are recommended value in RFC8312.
const BETA_CUBIC: f64 = 0.7;
const C: f64 = 0.4;
/// CUBIC State Variables.
///
/// We need to keep those variables across the connection.
/// k, w_max are described in the RFC.
#[derive(Debug, Default, Clone)]
pub struct State {
k: f64,
w_max: f64,
// Store cwnd increment during congestion avoidance.
cwnd_inc: u64,
}
/// CUBIC Functions.
///
/// Note that these calculations are based on a count of cwnd as bytes,
/// not packets.
/// Unit of t (duration) and RTT are based on seconds (f64).
impl State {
// K = cbrt(w_max * (1 - beta_cubic) / C) (Eq. 2)
fn cubic_k(&self, max_datagram_size: u64) -> f64 {
let w_max = self.w_max / max_datagram_size as f64;
(w_max * (1.0 - BETA_CUBIC) / C).cbrt()
}
// W_cubic(t) = C * (t - K)^3 - w_max (Eq. 1)
fn w_cubic(&self, t: Duration, max_datagram_size: u64) -> f64 {
let w_max = self.w_max / max_datagram_size as f64;
(C * (t.as_secs_f64() - self.k).powi(3) + w_max) * max_datagram_size as f64
}
// W_est(t) = w_max * beta_cubic + 3 * (1 - beta_cubic) / (1 + beta_cubic) *
// (t / RTT) (Eq. 4)
fn w_est(&self, t: Duration, rtt: Duration, max_datagram_size: u64) -> f64 {
let w_max = self.w_max / max_datagram_size as f64;
(w_max * BETA_CUBIC
+ 3.0 * (1.0 - BETA_CUBIC) / (1.0 + BETA_CUBIC) * t.as_secs_f64() / rtt.as_secs_f64())
* max_datagram_size as f64
}
}
/// The RFC8312 congestion controller, as widely used for TCP
#[derive(Debug, Clone)]
pub struct Cubic {
config: Arc<CubicConfig>,
/// Maximum number of bytes in flight that may be sent.
window: u64,
/// Slow start threshold in bytes. When the congestion window is below ssthresh, the mode is
/// slow start and the window grows by the number of bytes acknowledged.
ssthresh: u64,
/// The time when QUIC first detects a loss, causing it to enter recovery. When a packet sent
/// after this time is acknowledged, QUIC exits recovery.
recovery_start_time: Option<Instant>,
cubic_state: State,
}
impl Cubic {
/// Construct a state using the given `config` and current time `now`
pub fn new(config: Arc<CubicConfig>, _now: Instant) -> Self {
Self {
window: config.initial_window,
ssthresh: u64::MAX,
recovery_start_time: None,
config,
cubic_state: Default::default(),
}
}
}
impl Controller for Cubic {
fn on_ack(
&mut self,
now: Instant,
sent: Instant,
bytes: u64,
app_limited: bool,
rtt: &RttEstimator,
) {
if app_limited
|| self
.recovery_start_time
.map(|recovery_start_time| sent <= recovery_start_time)
.unwrap_or(false)
{
return;
}
if self.window < self.ssthresh {
// Slow start
self.window += bytes;
} else {
// Congestion avoidance.
let ca_start_time;
match self.recovery_start_time {
Some(t) => ca_start_time = t,
None => {
// When we come here without congestion_event() triggered,
// initialize congestion_recovery_start_time, w_max and k.
ca_start_time = now;
self.recovery_start_time = Some(now);
self.cubic_state.w_max = self.window as f64;
self.cubic_state.k = 0.0;
}
}
let t = now - ca_start_time;
// w_cubic(t + rtt)
let w_cubic = self
.cubic_state
.w_cubic(t + rtt.get(), self.config.max_datagram_size);
// w_est(t)
let w_est = self
.cubic_state
.w_est(t, rtt.get(), self.config.max_datagram_size);
let mut cubic_cwnd = self.window;
if w_cubic < w_est {
// TCP friendly region.
cubic_cwnd = cmp::max(cubic_cwnd, w_est as u64);
} else if cubic_cwnd < w_cubic as u64 {
// Concave region or convex region use same increment.
let cubic_inc = (w_cubic - cubic_cwnd as f64) / cubic_cwnd as f64
* self.config.max_datagram_size as f64;
cubic_cwnd += cubic_inc as u64;
}
// Update the increment and increase cwnd by MSS.
self.cubic_state.cwnd_inc += cubic_cwnd - self.window;
// cwnd_inc can be more than 1 MSS in the late stage of max probing.
// however RFC9002 §7.3.3 (Congestion Avoidance) limits
// the increase of cwnd to 1 max_datagram_size per cwnd acknowledged.
if self.cubic_state.cwnd_inc as u64 >= self.config.max_datagram_size {
self.window += self.config.max_datagram_size;
self.cubic_state.cwnd_inc = 0;
}
}
}
fn on_congestion_event(
&mut self,
now: Instant,
sent: Instant,
is_persistent_congestion: bool,
_lost_bytes: u64,
) {
if self
.recovery_start_time
.map(|recovery_start_time| sent <= recovery_start_time)
.unwrap_or(false)
{
return;
}
self.recovery_start_time = Some(now);
// Fast convergence
#[allow(clippy::branches_sharing_code)]
// https://github.com/rust-lang/rust-clippy/issues/7198
if (self.window as f64) < self.cubic_state.w_max {
self.cubic_state.w_max = self.window as f64 * (1.0 + BETA_CUBIC) / 2.0;
} else {
self.cubic_state.w_max = self.window as f64;
}
self.ssthresh = cmp::max(
(self.cubic_state.w_max * BETA_CUBIC) as u64,
self.config.minimum_window,
);
self.window = self.ssthresh;
self.cubic_state.k = self.cubic_state.cubic_k(self.config.max_datagram_size);
self.cubic_state.cwnd_inc = (self.cubic_state.cwnd_inc as f64 * BETA_CUBIC) as u64;
if is_persistent_congestion {
self.recovery_start_time = None;
self.cubic_state.w_max = self.window as f64;
// 4.7 Timeout - reduce ssthresh based on BETA_CUBIC
self.ssthresh = cmp::max(
(self.window as f64 * BETA_CUBIC) as u64,
self.config.minimum_window,
);
self.cubic_state.cwnd_inc = 0;
self.window = self.config.minimum_window;
}
}
fn window(&self) -> u64 {
self.window
}
fn clone_box(&self) -> Box<dyn Controller> {
Box::new(self.clone())
}
fn initial_window(&self) -> u64 {
self.config.initial_window
}
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
}
}
/// Configuration for the `Cubic` congestion controller
#[derive(Debug, Clone)]
pub struct CubicConfig {
max_datagram_size: u64,
initial_window: u64,
minimum_window: u64,
}
impl CubicConfig {
/// The sender’s maximum UDP payload size. Does not include UDP or IP overhead.
///
/// Used for calculating initial and minimum congestion windows.
pub fn max_datagram_size(&mut self, value: u64) -> &mut Self {
self.max_datagram_size = value;
self
}
/// Default limit on the amount of outstanding data in bytes.
///
/// Recommended value: `min(10 * max_datagram_size, max(2 * max_datagram_size, 14720))`
pub fn initial_window(&mut self, value: u64) -> &mut Self {
self.initial_window = value;
self
}
/// Default minimum congestion window.
///
/// Recommended value: `2 * max_datagram_size`.
pub fn minimum_window(&mut self, value: u64) -> &mut Self {
self.minimum_window = value;
self
}
}
impl Default for CubicConfig {
fn default() -> Self {
const MAX_DATAGRAM_SIZE: u64 = 1232;
Self {
max_datagram_size: MAX_DATAGRAM_SIZE,
initial_window: 14720.max(2 * MAX_DATAGRAM_SIZE).min(10 * MAX_DATAGRAM_SIZE),
minimum_window: 2 * MAX_DATAGRAM_SIZE,
}
}
}
impl ControllerFactory for Arc<CubicConfig> {
fn build(&self, now: Instant) -> Box<dyn Controller> {
Box::new(Cubic::new(self.clone(), now))
}
}