1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
#![crate_name="ndarray"]
#![crate_type="dylib"]
//! The **ndarray** crate provides the [**Array**](./struct.Array.html) type, an
//! n-dimensional container similar to numpy's ndarray.
//!
//! ## Crate Summary and Status
//!
//! - Implements the numpy striding scheme for n-dimensional arrays
//! - `Array` is clone on write, so it can be both a view or an owner of the
//! data.
//! - Striding and broadcasting is fully implemented
//! - Due to iterators, arithmetic operations, matrix multiplication etc
//! are not very well optimized, this is not a serious crate for numerics
//! or linear algebra. `Array` is a good container.
//! - There is no integration with linear algebra packages (at least not yet).
//!
//! ## Crate feature flags
//!
//! - `assign_ops`
//! - Optional, requires nightly
//! - Enables the compound assignment operators
//!
#![cfg_attr(feature = "assign_ops", feature(augmented_assignments,
op_assign_traits))]
#[cfg(feature = "serde")]
extern crate serde;
#[cfg(feature = "rustc-serialize")]
extern crate rustc_serialize as serialize;
extern crate itertools as it;
#[cfg(not(nocomplex))]
extern crate num as libnum;
use std::mem;
use std::rc::Rc;
use libnum::Float;
use std::ops::{Add, Sub, Mul, Div, Rem, Neg, Not, Shr, Shl,
BitAnd,
BitOr,
BitXor,
};
pub use dimension::{Dimension, RemoveAxis};
pub use si::{Si, S, SliceRange};
use dimension::stride_offset;
pub use indexes::Indexes;
use iterators::Baseiter;
pub mod linalg;
mod arraytraits;
#[cfg(feature = "serde")]
mod arrayserialize;
mod arrayformat;
mod dimension;
mod indexes;
mod iterators;
mod si;
//mod macros;
// NOTE: In theory, the whole library should compile
// and pass tests even if you change Ix and Ixs.
/// Array index type
pub type Ix = u32;
/// Array index type (signed)
pub type Ixs = i32;
/// The **Array** type is an *N-dimensional array*.
///
/// A reference counted array with copy-on-write mutability.
///
/// The array can be a container of numerical use, supporting
/// all mathematical operators by applying them elementwise -- but it can
/// store any kind of value. It cannot grow or shrink, but can be sliced into
/// views of parts of its data.
///
/// The array is both a view and a shared owner of its data. Some methods,
/// for example [*slice()*](#method.slice), merely change the view of the data,
/// while methods like [*iadd()*](#method.iadd) allow mutating the element
/// values.
///
/// Calling a method for mutating elements, for example
/// [*at_mut()*](#method.at_mut), [*iadd()*](#method.iadd) or
/// [*iter_mut()*](#method.iter_mut) will break sharing and require a clone of
/// the data (if it is not uniquely held).
///
/// ## Method Conventions
///
/// Methods mutating the view or array elements in place use an *i* prefix,
/// for example *slice* vs. *islice* and *add* vs *iadd*.
///
/// ## Indexing
///
/// Arrays use **u32** for indexing, represented by the types **Ix** and **Ixs**
/// (signed).
///
/// ## Broadcasting
///
/// Arrays support limited *broadcasting*, where arithmetic operations with
/// array operands of different sizes can be carried out by repeating the
/// elements of the smaller dimension array. See
/// [*.broadcast_iter()*](#method.broadcast_iter) for a more detailed
/// description.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 1.],
/// [1., 2.]]);
/// let b = arr2(&[[0., 1.]]);
///
/// let c = arr2(&[[1., 2.],
/// [1., 3.]]);
/// // We can add because the shapes are compatible even if not equal.
/// assert!(
/// c == a + b
/// );
/// ```
///
pub struct Array<A, D> {
// FIXME: Unsafecell around vec needed?
/// Rc data when used as view, Uniquely held data when being mutated
data: Rc<Vec<A>>,
/// A pointer into the buffer held by data, may point anywhere
/// in its range.
ptr: *mut A,
/// The size of each axis
dim: D,
/// The element count stride per axis. To be parsed as **isize**.
strides: D,
}
impl<A, D: Clone> Clone for Array<A, D>
{
fn clone(&self) -> Array<A, D> {
Array {
data: self.data.clone(),
ptr: self.ptr,
dim: self.dim.clone(),
strides: self.strides.clone(),
}
}
}
impl<A> Array<A, Ix>
{
/// Create a one-dimensional array from a vector (no allocation needed).
pub fn from_vec(v: Vec<A>) -> Array<A, Ix> {
unsafe {
Array::from_vec_dim(v.len() as Ix, v)
}
}
/// Create a one-dimensional array from an iterable.
pub fn from_iter<I: IntoIterator<Item=A>>(iterable: I) -> Array<A, Ix> {
Self::from_vec(iterable.into_iter().collect())
}
}
impl Array<f32, Ix>
{
/// Create a one-dimensional Array from interval **[begin, end)**
pub fn range(begin: f32, end: f32) -> Array<f32, Ix>
{
let n = (end - begin) as usize;
let span = if n > 0 { (n - 1) as f32 } else { 0. };
Array::from_iter(it::linspace(begin,
begin + span,
n))
}
}
impl<A, D> Array<A, D> where D: Dimension
{
/// Construct an Array with zeros.
pub fn zeros(dim: D) -> Array<A, D> where A: Clone + libnum::Zero
{
Array::from_elem(dim, libnum::zero())
}
/// Construct an Array with default values, dimension `dim`.
pub fn default(dim: D) -> Array<A, D>
where A: Default
{
let v = (0..dim.size()).map(|_| A::default()).collect();
unsafe {
Array::from_vec_dim(dim, v)
}
}
/// Construct an Array with copies of **elem**.
///
/// ```
/// use ndarray::Array;
/// use ndarray::arr3;
///
/// let a = Array::from_elem((2, 2, 2), 1.);
///
/// assert!(
/// a == arr3(&[[[1., 1.],
/// [1., 1.]],
/// [[1., 1.],
/// [1., 1.]]])
/// );
/// ```
pub fn from_elem(dim: D, elem: A) -> Array<A, D> where A: Clone
{
let v = std::iter::repeat(elem).take(dim.size()).collect();
unsafe {
Array::from_vec_dim(dim, v)
}
}
/// Create an array from a vector (with no allocation needed).
///
/// Unsafe because dimension is unchecked, and must be correct.
pub unsafe fn from_vec_dim(dim: D, mut v: Vec<A>) -> Array<A, D>
{
debug_assert!(dim.size() == v.len());
Array {
ptr: v.as_mut_ptr(),
data: std::rc::Rc::new(v),
strides: dim.default_strides(),
dim: dim
}
}
/// Return the total number of elements in the Array.
pub fn len(&self) -> usize
{
self.dim.size()
}
/// Return the shape of the array.
pub fn dim(&self) -> D {
self.dim.clone()
}
/// Return the shape of the array as a slice.
pub fn shape(&self) -> &[Ix] {
self.dim.slice()
}
/// Return **true** if the array data is laid out in
/// contiguous “C order” where the last index is the most rapidly
/// varying.
///
/// Return **false** otherwise, i.e the array is possibly not
/// contiguous in memory, it has custom strides, etc.
pub fn is_standard_layout(&self) -> bool
{
self.strides == self.dim.default_strides()
}
/// Return a slice of the array's backing data in memory order.
///
/// **Note:** Data memory order may not correspond to the index order
/// of the array. Neither is the raw data slice is restricted to just the
/// Array's view.
pub fn raw_data<'a>(&'a self) -> &'a [A]
{
&self.data
}
/// Return a sliced array.
///
/// **Panics** if **indexes** does not match the number of array axes.
pub fn slice(&self, indexes: &[Si]) -> Array<A, D>
{
let mut arr = self.clone();
arr.islice(indexes);
arr
}
/// Slice the array's view in place.
///
/// **Panics** if **indexes** does not match the number of array axes.
pub fn islice(&mut self, indexes: &[Si])
{
let offset = Dimension::do_slices(&mut self.dim, &mut self.strides, indexes);
unsafe {
self.ptr = self.ptr.offset(offset);
}
}
/// Return an iterator over a sliced view.
///
/// **Panics** if **indexes** does not match the number of array axes.
pub fn slice_iter<'a>(&'a self, indexes: &[Si]) -> Elements<'a, A, D>
{
let mut it = self.iter();
let offset = Dimension::do_slices(&mut it.inner.dim, &mut it.inner.strides, indexes);
unsafe {
it.inner.ptr = it.inner.ptr.offset(offset);
}
it
}
/// Return a reference to the element at **index**, or return **None**
/// if the index is out of bounds.
pub fn at<'a>(&'a self, index: D) -> Option<&'a A> {
self.dim.stride_offset_checked(&self.strides, &index)
.map(|offset| unsafe {
&*self.ptr.offset(offset)
})
}
/// Perform *unchecked* array indexing.
///
/// Return a reference to the element at **index**.
///
/// **Note:** only unchecked for non-debug builds of ndarray.
#[inline]
pub unsafe fn uchk_at<'a>(&'a self, index: D) -> &'a A {
debug_assert!(self.dim.stride_offset_checked(&self.strides, &index).is_some());
let off = Dimension::stride_offset(&index, &self.strides);
&*self.ptr.offset(off)
}
/// Perform *unchecked* array indexing.
///
/// Return a mutable reference to the element at **index**.
///
/// **Note:** Only unchecked for non-debug builds of ndarray.<br>
/// **Note:** The array must be uniquely held when mutating it.
#[inline]
pub unsafe fn uchk_at_mut(&mut self, index: D) -> &mut A {
debug_assert!(Rc::get_mut(&mut self.data).is_some());
debug_assert!(self.dim.stride_offset_checked(&self.strides, &index).is_some());
let off = Dimension::stride_offset(&index, &self.strides);
&mut *self.ptr.offset(off)
}
/// Return a protoiterator
#[inline]
fn base_iter<'a>(&'a self) -> Baseiter<'a, A, D>
{
unsafe {
Baseiter::new(self.ptr, self.dim.clone(), self.strides.clone())
}
}
/// Return an iterator of references to the elements of the array.
///
/// Iterator element type is **&'a A**.
pub fn iter<'a>(&'a self) -> Elements<'a, A, D>
{
Elements { inner: self.base_iter() }
}
/// Return an iterator of references to the elements of the array.
///
/// Iterator element type is **(D, &'a A)**.
pub fn indexed_iter<'a>(&'a self) -> Indexed<Elements<'a, A, D>>
{
self.iter().indexed()
}
/// Collapse dimension **axis** into length one,
/// and select the subview of **index** along that axis.
///
/// **Panics** if **index** is past the length of the axis.
pub fn isubview(&mut self, axis: usize, index: Ix)
{
dimension::do_sub(&mut self.dim, &mut self.ptr, &self.strides, axis, index)
}
/// Act like a larger size and/or shape array by *broadcasting*
/// into a larger shape, if possible.
///
/// Return **None** if shapes can not be broadcast together.
///
/// ## Background
///
/// * Two axes are compatible if they are equal, or one of them is 1.
/// * In this instance, only the axes of the smaller side (self) can be 1.
///
/// Compare axes beginning with the *last* axis of each shape.
///
/// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4)
/// because its axes are either equal or 1 (or missing);
/// while (2, 2) can *not* be broadcast into (2, 4).
///
/// The implementation creates an iterator with strides set to 0 for the
/// axes that are to be repeated.
///
/// See broadcasting documentation for Numpy for more information.
///
/// ```
/// use ndarray::arr1;
///
/// assert!(
/// arr1(&[1., 0.]).broadcast_iter((10, 2)).unwrap().count()
/// == 20
/// );
/// ```
pub fn broadcast_iter<'a, E: Dimension>(&'a self, dim: E)
-> Option<Elements<'a, A, E>>
{
/// Return new stride when trying to grow **from** into shape **to**
///
/// Broadcasting works by returning a "fake stride" where elements
/// to repeat are in axes with 0 stride, so that several indexes point
/// to the same element.
///
/// **Note:** Cannot be used for mutable iterators, since repeating
/// elements would create aliasing pointers.
fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> {
let mut new_stride = to.clone();
// begin at the back (the least significant dimension)
// size of the axis has to either agree or `from` has to be 1
if to.ndim() < from.ndim() {
return None
}
{
let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev();
for ((er, es), dr) in from.slice().iter().rev()
.zip(stride.slice().iter().rev())
.zip(new_stride_iter.by_ref())
{
/* update strides */
if *dr == *er {
/* keep stride */
*dr = *es;
} else if *er == 1 {
/* dead dimension, zero stride */
*dr = 0
} else {
return None;
}
}
/* set remaining strides to zero */
for dr in new_stride_iter {
*dr = 0;
}
}
Some(new_stride)
}
let broadcast_strides =
match upcast(&dim, &self.dim, &self.strides) {
Some(st) => st,
None => return None,
};
Some(Elements {
inner:
unsafe {
Baseiter::new(self.ptr, dim, broadcast_strides)
}
})
}
#[inline(never)]
fn broadcast_iter_unwrap<'a, E: Dimension>(&'a self, dim: E)
-> Elements<'a, A, E>
{
match self.broadcast_iter(dim.clone()) {
Some(it) => it,
None => panic!("Could not broadcast array from shape {:?} into: {:?}",
self.shape(), dim.slice())
}
}
/// Swap axes **ax** and **bx**.
///
/// **Panics** if the axes are out of bounds.
///
/// ```
/// use ndarray::arr2;
///
/// let mut a = arr2(&[[1., 2., 3.]]);
/// a.swap_axes(0, 1);
/// assert!(
/// a == arr2(&[[1.], [2.], [3.]])
/// );
/// ```
pub fn swap_axes(&mut self, ax: usize, bx: usize)
{
self.dim.slice_mut().swap(ax, bx);
self.strides.slice_mut().swap(ax, bx);
}
// Return (length, stride) for diagonal
fn diag_params(&self) -> (Ix, Ixs)
{
/* empty shape has len 1 */
let len = self.dim.slice().iter().map(|x| *x).min().unwrap_or(1);
let stride = self.strides.slice().iter()
.map(|x| *x as Ixs)
.fold(0, |sum, s| sum + s);
return (len, stride)
}
/// Return an iterator over the diagonal elements of the array.
///
/// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*,
/// *(1, 1, ..., 1)* etc as long as all axes have elements.
pub fn diag_iter<'a>(&'a self) -> Elements<'a, A, Ix>
{
let (len, stride) = self.diag_params();
unsafe {
Elements { inner:
Baseiter::new(self.ptr, len, stride as Ix)
}
}
}
/// Return the diagonal as a one-dimensional array.
pub fn diag(&self) -> Array<A, Ix> {
let (len, stride) = self.diag_params();
Array {
data: self.data.clone(),
ptr: self.ptr,
dim: len,
strides: stride as Ix,
}
}
/// Apply **f** elementwise and return a new array with
/// the results.
///
/// Return an array with the same shape as *self*.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
/// assert!(
/// a.map(|&x| (x / 2.) as i32)
/// == arr2(&[[0, 1], [1, 2]])
/// );
/// ```
pub fn map<'a, B, F>(&'a self, mut f: F) -> Array<B, D> where
F: FnMut(&'a A) -> B
{
let mut res = Vec::<B>::with_capacity(self.dim.size());
for elt in self.iter() {
res.push(f(elt))
}
unsafe {
Array::from_vec_dim(self.dim.clone(), res)
}
}
/// Select the subview **index** along **axis** and return an
/// array with that axis removed.
///
/// **Panics** if **index** is past the length of the axis.
///
/// ```
/// use ndarray::{arr1, arr2};
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
///
/// assert!(
/// a.subview(0, 0) == arr1(&[1., 2.]) &&
/// a.subview(1, 1) == arr1(&[2., 4.])
/// );
/// ```
pub fn subview(&self, axis: usize, index: Ix) -> Array<A, <D as RemoveAxis>::Smaller> where
D: RemoveAxis
{
let mut res = self.clone();
res.isubview(axis, index);
// don't use reshape -- we always know it will fit the size,
// and we can use remove_axis on the strides as well
Array{
data: res.data,
ptr: res.ptr,
dim: res.dim.remove_axis(axis),
strides: res.strides.remove_axis(axis),
}
}
/// Make the array unshared.
///
/// This method is mostly only useful with unsafe code.
pub fn ensure_unique(&mut self) where A: Clone
{
if Rc::get_mut(&mut self.data).is_some() {
return
}
if self.dim.size() <= self.data.len() / 2 {
unsafe {
*self = Array::from_vec_dim(self.dim.clone(),
self.iter().map(|x| x.clone()).collect());
}
return;
}
let our_off = (self.ptr as isize - self.data.as_ptr() as isize)
/ mem::size_of::<A>() as isize;
let rvec = Rc::make_mut(&mut self.data);
unsafe {
self.ptr = rvec.as_mut_ptr().offset(our_off);
}
}
/// Return a mutable reference to the element at **index**, or return **None**
/// if the index is out of bounds.
pub fn at_mut<'a>(&'a mut self, index: D) -> Option<&'a mut A> where A: Clone
{
self.ensure_unique();
self.dim.stride_offset_checked(&self.strides, &index)
.map(|offset| unsafe {
&mut *self.ptr.offset(offset)
})
}
/// Return an iterator of mutable references to the elements of the array.
///
/// Iterator element type is **&'a mut A**.
pub fn iter_mut<'a>(&'a mut self) -> ElementsMut<'a, A, D> where A: Clone
{
self.ensure_unique();
ElementsMut { inner: self.base_iter() }
}
/// Return an iterator of indexes and mutable references to the elements of the array.
///
/// Iterator element type is **(D, &'a mut A)**.
pub fn indexed_iter_mut<'a>(&'a mut self) -> Indexed<ElementsMut<'a, A, D>> where A: Clone
{
self.iter_mut().indexed()
}
/// Return an iterator of mutable references into the sliced view
/// of the array.
///
/// Iterator element type is **&'a mut A**.
///
/// **Panics** if **indexes** does not match the number of array axes.
pub fn slice_iter_mut<'a>(&'a mut self, indexes: &[Si]) -> ElementsMut<'a, A, D> where A: Clone
{
let mut it = self.iter_mut();
let offset = Dimension::do_slices(&mut it.inner.dim, &mut it.inner.strides, indexes);
unsafe {
it.inner.ptr = it.inner.ptr.offset(offset);
}
it
}
/// Select the subview **index** along **axis** and return an iterator
/// of the subview.
///
/// Iterator element type is **&'a mut A**.
///
/// **Panics** if **axis** or **index** is out of bounds.
pub fn sub_iter_mut<'a>(&'a mut self, axis: usize, index: Ix)
-> ElementsMut<'a, A, D> where A: Clone
{
let mut it = self.iter_mut();
dimension::do_sub(&mut it.inner.dim, &mut it.inner.ptr, &it.inner.strides, axis, index);
it
}
/// Return an iterator over the diagonal elements of the array.
pub fn diag_iter_mut<'a>(&'a mut self) -> ElementsMut<'a, A, Ix> where A: Clone
{
self.ensure_unique();
let (len, stride) = self.diag_params();
unsafe {
ElementsMut { inner:
Baseiter::new(self.ptr, len, stride as Ix),
}
}
}
/// Return a mutable slice of the array's backing data in memory order.
///
/// **Note:** Data memory order may not correspond to the index order
/// of the array. Neither is the raw data slice is restricted to just the
/// array's view.
///
/// **Note:** The data is uniquely held and nonaliased
/// while it is mutably borrowed.
pub fn raw_data_mut<'a>(&'a mut self) -> &'a mut [A]
where A: Clone
{
self.ensure_unique();
&mut Rc::make_mut(&mut self.data)[..]
}
/// Transform the array into **shape**; any other shape
/// with the same number of elements is accepted.
///
/// **Panics** if sizes are incompatible.
///
/// ```
/// use ndarray::{arr1, arr2};
///
/// assert!(
/// arr1(&[1., 2., 3., 4.]).reshape((2, 2))
/// == arr2(&[[1., 2.],
/// [3., 4.]])
/// );
/// ```
pub fn reshape<E: Dimension>(&self, shape: E) -> Array<A, E> where A: Clone
{
if shape.size() != self.dim.size() {
panic!("Incompatible sizes in reshape, attempted from: {:?}, to: {:?}",
self.dim.slice(), shape.slice())
}
// Check if contiguous, if not => copy all, else just adapt strides
if self.is_standard_layout() {
let cl = self.clone();
Array{
data: cl.data,
ptr: cl.ptr,
strides: shape.default_strides(),
dim: shape,
}
} else {
let v = self.iter().map(|x| x.clone()).collect::<Vec<A>>();
unsafe {
Array::from_vec_dim(shape, v)
}
}
}
/// Perform an elementwise assigment to **self** from **other**.
///
/// If their shapes disagree, **other** is broadcast to the shape of **self**.
///
/// **Panics** if broadcasting isn't possible.
pub fn assign<E: Dimension>(&mut self, other: &Array<A, E>) where A: Clone
{
if self.shape() == other.shape() {
for (x, y) in self.iter_mut().zip(other.iter()) {
*x = y.clone();
}
} else {
let other_iter = other.broadcast_iter_unwrap(self.dim());
for (x, y) in self.iter_mut().zip(other_iter) {
*x = y.clone();
}
}
}
/// Perform an elementwise assigment to **self** from scalar **x**.
pub fn assign_scalar(&mut self, x: &A) where A: Clone
{
for elt in self.raw_data_mut().iter_mut() {
*elt = x.clone();
}
}
}
/// Return a zero-dimensional array with the element **x**.
pub fn arr0<A>(x: A) -> Array<A, ()>
{
let mut v = Vec::with_capacity(1);
v.push(x);
unsafe { Array::from_vec_dim((), v) }
}
/// Return a one-dimensional array with elements from **xs**.
pub fn arr1<A: Clone>(xs: &[A]) -> Array<A, Ix>
{
Array::from_vec(xs.to_vec())
}
/// Slice or fixed-size array used for array initialization
pub unsafe trait ArrInit<T> {
fn as_init_slice(&self) -> &[T];
fn is_fixed_size() -> bool { false }
}
unsafe impl<T> ArrInit<T> for [T]
{
fn as_init_slice(&self) -> &[T]
{
self
}
}
macro_rules! impl_arr_init {
(__impl $n: expr) => (
unsafe impl<T> ArrInit<T> for [T; $n] {
fn as_init_slice(&self) -> &[T] { self }
fn is_fixed_size() -> bool { true }
}
);
() => ();
($n: expr, $($m:expr,)*) => (
impl_arr_init!(__impl $n);
impl_arr_init!($($m,)*);
)
}
impl_arr_init!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,);
/// Return a two-dimensional array with elements from **xs**.
///
/// **Panics** if the slices are not all of the same length.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1, 2, 3],
/// [4, 5, 6]]);
/// assert!(
/// a.shape() == [2, 3]
/// );
/// ```
pub fn arr2<A: Clone, V: ArrInit<A>>(xs: &[V]) -> Array<A, (Ix, Ix)>
{
// FIXME: Simplify this when V is fix size array
let (m, n) = (xs.len() as Ix,
xs.get(0).map_or(0, |snd| snd.as_init_slice().len() as Ix));
let dim = (m, n);
let mut result = Vec::<A>::with_capacity(dim.size());
for snd in xs.iter() {
let snd = snd.as_init_slice();
assert!(<V as ArrInit<A>>::is_fixed_size() || snd.len() as Ix == n);
result.extend(snd.iter().map(|x| x.clone()))
}
unsafe {
Array::from_vec_dim(dim, result)
}
}
/// Return a three-dimensional array with elements from **xs**.
///
/// **Panics** if the slices are not all of the same length.
///
/// ```
/// use ndarray::arr3;
///
/// let a = arr3(&[[[1, 2],
/// [3, 4]],
/// [[5, 6],
/// [7, 8]],
/// [[9, 0],
/// [1, 2]]]);
/// assert!(
/// a.shape() == [3, 2, 2]
/// );
/// ```
pub fn arr3<A: Clone, V: ArrInit<U>, U: ArrInit<A>>(xs: &[V]) -> Array<A, (Ix, Ix, Ix)>
{
// FIXME: Simplify this when U/V are fix size arrays
let m = xs.len() as Ix;
let fst = xs.get(0).map(|snd| snd.as_init_slice());
let thr = fst.and_then(|elt| elt.get(0).map(|elt2| elt2.as_init_slice()));
let n = fst.map_or(0, |v| v.len() as Ix);
let o = thr.map_or(0, |v| v.len() as Ix);
let dim = (m, n, o);
let mut result = Vec::<A>::with_capacity(dim.size());
for snd in xs.iter() {
let snd = snd.as_init_slice();
assert!(<V as ArrInit<U>>::is_fixed_size() || snd.len() as Ix == n);
for thr in snd.iter() {
let thr = thr.as_init_slice();
assert!(<U as ArrInit<A>>::is_fixed_size() || thr.len() as Ix == o);
result.extend(thr.iter().map(|x| x.clone()))
}
}
unsafe {
Array::from_vec_dim(dim, result)
}
}
impl<A, D> Array<A, D> where
A: Clone + Add<Output=A>,
D: RemoveAxis,
{
/// Return sum along **axis**.
///
/// ```
/// use ndarray::{arr0, arr1, arr2};
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
/// assert!(
/// a.sum(0) == arr1(&[4., 6.]) &&
/// a.sum(1) == arr1(&[3., 7.]) &&
///
/// a.sum(0).sum(0) == arr0(10.)
/// );
/// ```
///
/// **Panics** if **axis** is out of bounds.
pub fn sum(&self, axis: usize) -> Array<A, <D as RemoveAxis>::Smaller>
{
let n = self.shape()[axis];
let mut res = self.subview(axis, 0);
for i in 1..n {
res.iadd(&self.subview(axis, i))
}
res
}
}
impl<A, D> Array<A, D> where
A: Copy + linalg::Field,
D: RemoveAxis,
{
/// Return mean along **axis**.
///
/// ```
/// use ndarray::{arr1, arr2};
///
/// let a = arr2(&[[1., 2.],
/// [3., 4.]]);
/// assert!(
/// a.mean(0) == arr1(&[2.0, 3.0]) &&
/// a.mean(1) == arr1(&[1.5, 3.5])
/// );
/// ```
///
///
/// **Panics** if **axis** is out of bounds.
pub fn mean(&self, axis: usize) -> Array<A, <D as RemoveAxis>::Smaller>
{
let n = self.shape()[axis];
let mut sum = self.sum(axis);
let one = libnum::one::<A>();
let mut cnt = one;
for _ in 1..n {
cnt = cnt + one;
}
for elt in sum.iter_mut() {
*elt = *elt / cnt;
}
sum
}
}
impl<A> Array<A, (Ix, Ix)>
{
/// Return an iterator over the elements of row **index**.
///
/// **Panics** if **index** is out of bounds.
pub fn row_iter<'a>(&'a self, index: Ix) -> Elements<'a, A, Ix>
{
let (m, n) = self.dim;
let (sr, sc) = self.strides;
assert!(index < m);
unsafe {
Elements { inner:
Baseiter::new(self.ptr.offset(stride_offset(index, sr)), n, sc)
}
}
}
/// Return an iterator over the elements of column **index**.
///
/// **Panics** if **index** is out of bounds.
pub fn col_iter<'a>(&'a self, index: Ix) -> Elements<'a, A, Ix>
{
let (m, n) = self.dim;
let (sr, sc) = self.strides;
assert!(index < n);
unsafe {
Elements { inner:
Baseiter::new(self.ptr.offset(stride_offset(index, sc)), m, sr)
}
}
}
}
// Matrix multiplication only defined for simple types to
// avoid trouble with failing + and *, and destructors
impl<'a, A: Copy + linalg::Ring> Array<A, (Ix, Ix)>
{
/// Perform matrix multiplication of rectangular arrays **self** and **other**.
///
/// The array sizes must agree in the way that
/// if **self** is *M* × *N*, then **other** is *N* × *K*.
///
/// Return a result array with shape *M* × *K*.
///
/// **Panics** if sizes are incompatible.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1., 2.],
/// [0., 1.]]);
/// let b = arr2(&[[1., 2.],
/// [2., 3.]]);
///
/// assert!(
/// a.mat_mul(&b) == arr2(&[[5., 8.],
/// [2., 3.]])
/// );
/// ```
///
pub fn mat_mul(&self, other: &Array<A, (Ix, Ix)>) -> Array<A, (Ix, Ix)>
{
let ((m, a), (b, n)) = (self.dim, other.dim);
let (self_columns, other_rows) = (a, b);
assert!(self_columns == other_rows);
// Avoid initializing the memory in vec -- set it during iteration
let mut res_elems = Vec::<A>::with_capacity(m as usize * n as usize);
unsafe {
res_elems.set_len(m as usize * n as usize);
}
let mut i = 0;
let mut j = 0;
for rr in res_elems.iter_mut() {
unsafe {
let dot = (0..a).fold(libnum::zero::<A>(),
|s, k| s + *self.uchk_at((i, k)) * *other.uchk_at((k, j))
);
std::ptr::write(rr, dot);
}
j += 1;
if j == n {
j = 0;
i += 1;
}
}
unsafe {
Array::from_vec_dim((m, n), res_elems)
}
}
/// Perform the matrix multiplication of the rectangular array **self** and
/// column vector **other**.
///
/// The array sizes must agree in the way that
/// if **self** is *M* × *N*, then **other** is *N*.
///
/// Return a result array with shape *M*.
///
/// **Panics** if sizes are incompatible.
pub fn mat_mul_col(&self, other: &Array<A, Ix>) -> Array<A, Ix>
{
let ((m, a), n) = (self.dim, other.dim);
let (self_columns, other_rows) = (a, n);
assert!(self_columns == other_rows);
// Avoid initializing the memory in vec -- set it during iteration
let mut res_elems = Vec::<A>::with_capacity(m as usize);
unsafe {
res_elems.set_len(m as usize);
}
let mut i = 0;
for rr in res_elems.iter_mut() {
unsafe {
let dot = (0..a).fold(libnum::zero::<A>(),
|s, k| s + *self.uchk_at((i, k)) * *other.uchk_at(k)
);
std::ptr::write(rr, dot);
}
i += 1;
}
unsafe {
Array::from_vec_dim(m, res_elems)
}
}
}
impl<A: Float + PartialOrd, D: Dimension> Array<A, D>
{
/// Return **true** if the arrays' elementwise differences are all within
/// the given absolute tolerance.<br>
/// Return **false** otherwise, or if the shapes disagree.
pub fn allclose(&self, other: &Array<A, D>, tol: A) -> bool
{
self.shape() == other.shape() &&
self.iter().zip(other.iter()).all(|(x, y)| (*x - *y).abs() <= tol)
}
}
// Array OPERATORS
macro_rules! impl_binary_op(
($trt:ident, $mth:ident, $imethod:ident, $imth_scalar:ident) => (
impl<A, D> Array<A, D> where
A: Clone + $trt<A, Output=A>,
D: Dimension,
{
/// Perform an elementwise arithmetic operation between **self** and **other**,
/// *in place*.
///
/// If their shapes disagree, **other** is broadcast to the shape of **self**.
///
/// **Panics** if broadcasting isn't possible.
pub fn $imethod <E: Dimension> (&mut self, other: &Array<A, E>)
{
if self.dim.ndim() == other.dim.ndim() &&
self.shape() == other.shape() {
for (x, y) in self.iter_mut().zip(other.iter()) {
*x = (x.clone()). $mth (y.clone());
}
} else {
let other_iter = other.broadcast_iter_unwrap(self.dim());
for (x, y) in self.iter_mut().zip(other_iter) {
*x = (x.clone()). $mth (y.clone());
}
}
}
/// Perform an elementwise arithmetic operation between **self** and the scalar **x**,
/// *in place*.
pub fn $imth_scalar (&mut self, x: &A)
{
for elt in self.iter_mut() {
*elt = elt.clone(). $mth (x.clone());
}
}
}
/// Perform an elementwise arithmetic operation between **self** and **other**,
/// and return the result.
///
/// If their shapes disagree, **other** is broadcast to the shape of **self**.
///
/// **Panics** if broadcasting isn't possible.
impl<'a, A, D, E> $trt<Array<A, E>> for Array<A, D>
where A: Clone + $trt<A, Output=A>,
D: Dimension,
E: Dimension,
{
type Output = Array<A, D>;
fn $mth (mut self, other: Array<A, E>) -> Array<A, D>
{
// FIXME: Can we co-broadcast arrays here? And how?
if self.shape() == other.shape() {
for (x, y) in self.iter_mut().zip(other.iter()) {
*x = x.clone(). $mth (y.clone());
}
} else {
let other_iter = other.broadcast_iter_unwrap(self.dim());
for (x, y) in self.iter_mut().zip(other_iter) {
*x = x.clone(). $mth (y.clone());
}
}
self
}
}
/// Perform an elementwise arithmetic operation between **self** and **other**,
/// and return the result.
///
/// If their shapes disagree, **other** is broadcast to the shape of **self**.
///
/// **Panics** if broadcasting isn't possible.
impl<'a, A, D, E> $trt<&'a Array<A, E>> for &'a Array<A, D>
where A: Clone + $trt<A, Output=A>,
D: Dimension,
E: Dimension,
{
type Output = Array<A, D>;
fn $mth (self, other: &'a Array<A, E>) -> Array<A, D>
{
// FIXME: Can we co-broadcast arrays here? And how?
let mut result = Vec::<A>::with_capacity(self.dim.size());
if self.shape() == other.shape() {
for (x, y) in self.iter().zip(other.iter()) {
result.push((x.clone()). $mth (y.clone()));
}
} else {
let other_iter = other.broadcast_iter_unwrap(self.dim());
for (x, y) in self.iter().zip(other_iter) {
result.push((x.clone()). $mth (y.clone()));
}
}
unsafe {
Array::from_vec_dim(self.dim.clone(), result)
}
}
}
);
);
impl_binary_op!(Add, add, iadd, iadd_scalar);
impl_binary_op!(Sub, sub, isub, isub_scalar);
impl_binary_op!(Mul, mul, imul, imul_scalar);
impl_binary_op!(Div, div, idiv, idiv_scalar);
impl_binary_op!(Rem, rem, irem, irem_scalar);
impl_binary_op!(BitAnd, bitand, ibitand, ibitand_scalar);
impl_binary_op!(BitOr, bitor, ibitor, ibitor_scalar);
impl_binary_op!(BitXor, bitxor, ibitxor, ibitxor_scalar);
impl_binary_op!(Shl, shl, ishl, ishl_scalar);
impl_binary_op!(Shr, shr, ishr, ishr_scalar);
#[cfg(feature = "assign_ops")]
mod assign_ops {
use super::*;
use std::ops::{
AddAssign,
SubAssign,
MulAssign,
DivAssign,
RemAssign,
BitAndAssign,
BitOrAssign,
BitXorAssign,
};
macro_rules! impl_assign_op {
($trt:ident, $method:ident) => {
/// Perform an elementwise in place arithmetic operation between **self** and **other**,
///
/// If their shapes disagree, **other** is broadcast to the shape of **self**.
///
/// **Panics** if broadcasting isn't possible.
///
/// **Requires `feature = "assign_ops"`**
impl<'a, A, D, E> $trt<&'a Array<A, E>> for Array<A, D>
where A: Clone + $trt<A>,
D: Dimension,
E: Dimension,
{
fn $method(&mut self, other: &Array<A, E>) {
if self.shape() == other.shape() {
for (x, y) in self.iter_mut().zip(other.iter()) {
x.$method(y.clone());
}
} else {
let other_iter = other.broadcast_iter_unwrap(self.dim());
for (x, y) in self.iter_mut().zip(other_iter) {
x.$method(y.clone());
}
}
}
}
};
}
impl_assign_op!(AddAssign, add_assign);
impl_assign_op!(SubAssign, sub_assign);
impl_assign_op!(MulAssign, mul_assign);
impl_assign_op!(DivAssign, div_assign);
impl_assign_op!(RemAssign, rem_assign);
impl_assign_op!(BitAndAssign, bitand_assign);
impl_assign_op!(BitOrAssign, bitor_assign);
impl_assign_op!(BitXorAssign, bitxor_assign);
}
impl<A: Clone + Neg<Output=A>, D: Dimension>
Array<A, D>
{
/// Perform an elementwise negation of **self**, *in place*.
pub fn ineg(&mut self)
{
for elt in self.iter_mut() {
*elt = elt.clone().neg()
}
}
}
impl<A: Clone + Neg<Output=A>, D: Dimension>
Neg for Array<A, D>
{
type Output = Self;
/// Perform an elementwise negation of **self** and return the result.
fn neg(mut self) -> Array<A, D>
{
self.ineg();
self
}
}
impl<A: Clone + Not<Output=A>, D: Dimension>
Array<A, D>
{
/// Perform an elementwise unary not of **self**, *in place*.
pub fn inot(&mut self)
{
for elt in self.iter_mut() {
*elt = elt.clone().not()
}
}
}
impl<A: Clone + Not<Output=A>, D: Dimension>
Not for Array<A, D>
{
type Output = Self;
/// Perform an elementwise unary not of **self** and return the result.
fn not(mut self) -> Array<A, D>
{
self.inot();
self
}
}
/// An iterator over the elements of an array.
///
/// Iterator element type is **&'a A**.
pub struct Elements<'a, A: 'a, D> {
inner: Baseiter<'a, A, D>,
}
impl<'a, A, D> Elements<'a, A, D> where D: Clone
{
/// Return the base dimension of the array being iterated.
pub fn dim(&self) -> D
{
self.inner.dim.clone()
}
/// Return an indexed version of the iterator.
///
/// Iterator element type is **(D, &'a A)**.
///
/// **Note:** the indices run over the logical dimension of the iterator,
/// i.e. a *.slice_iter()* will yield indices relative to the slice, not the
/// base array.
pub fn indexed(self) -> Indexed<Elements<'a, A, D>>
{
Indexed {
inner: self,
}
}
}
/// An iterator over the elements of an array.
///
/// Iterator element type is **&'a mut A**.
pub struct ElementsMut<'a, A: 'a, D> {
inner: Baseiter<'a, A, D>,
}
impl<'a, A, D> ElementsMut<'a, A, D> where D: Clone
{
/// Return the base dimension of the array being iterated.
pub fn dim(&self) -> D
{
self.inner.dim.clone()
}
/// Return an indexed version of the iterator.
///
/// Iterator element type is **(D, &'a mut A)**.
pub fn indexed(self) -> Indexed<ElementsMut<'a, A, D>>
{
Indexed {
inner: self,
}
}
}
/// An iterator over the indexes and elements of an array.
#[derive(Clone)]
pub struct Indexed<I> {
inner: I,
}