revm_primitives

Struct Address

Source
#[repr(transparent)]
pub struct Address(pub FixedBytes<20>);
Expand description

An Ethereum address, 20 bytes in length.

This type is separate from B160 / FixedBytes<20> and is declared with the wrap_fixed_bytes! macro. This allows us to implement address-specific functionality.

The main difference with the generic FixedBytes implementation is that Display formats the address using its EIP-55 checksum (to_checksum). Use Debug to display the raw bytes without the checksum.

§Examples

Parsing and formatting:

use alloy_primitives::{address, Address};

let checksummed = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045";
let expected = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
let address = Address::parse_checksummed(checksummed, None).expect("valid checksum");
assert_eq!(address, expected);

// Format the address with the checksum
assert_eq!(address.to_string(), checksummed);
assert_eq!(address.to_checksum(None), checksummed);

// Format the compressed checksummed address
assert_eq!(format!("{address:#}"), "0xd8dA…6045");

// Format the address without the checksum
assert_eq!(format!("{address:?}"), "0xd8da6bf26964af9d7eed9e03e53415d37aa96045");

Tuple Fields§

§0: FixedBytes<20>

Implementations§

Source§

impl Address

Source

pub const ZERO: Address = _

Array of Zero bytes.

Source

pub const fn new(bytes: [u8; 20]) -> Address

Wraps the given byte array in this type.

Source

pub const fn with_last_byte(x: u8) -> Address

Creates a new byte array with the last byte set to x.

Source

pub const fn repeat_byte(byte: u8) -> Address

Creates a new byte array where all bytes are set to byte.

Source

pub const fn len_bytes() -> usize

Returns the size of this array in bytes.

Source

pub fn random() -> Address

Instantiates a new fixed byte array with cryptographically random content.

§Panics

Panics if the underlying call to getrandom_uninit fails.

Source

pub fn try_random() -> Result<Address, Error>

Tries to create a new fixed byte array with cryptographically random content.

§Errors

This function only propagates the error from the underlying call to getrandom_uninit.

Source

pub fn randomize(&mut self)

Fills this fixed byte array with cryptographically random content.

§Panics

Panics if the underlying call to getrandom_uninit fails.

Source

pub fn try_randomize(&mut self) -> Result<(), Error>

Tries to fill this fixed byte array with cryptographically random content.

§Errors

This function only propagates the error from the underlying call to getrandom_uninit.

Source

pub fn random_with<R>(rng: &mut R) -> Address
where R: Rng + ?Sized,

Creates a new fixed byte array with the given random number generator.

Source

pub fn randomize_with<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized,

Fills this fixed byte array with the given random number generator.

Source

pub fn from_slice(src: &[u8]) -> Address

Create a new byte array from the given slice src.

For a fallible version, use the TryFrom<&[u8]> implementation.

§Note

The given bytes are interpreted in big endian order.

§Panics

If the length of src and the number of bytes in Self do not match.

Source

pub fn left_padding_from(value: &[u8]) -> Address

Create a new byte array from the given slice src, left-padding it with zeroes if necessary.

§Note

The given bytes are interpreted in big endian order.

§Panics

Panics if src.len() > N.

Source

pub fn right_padding_from(value: &[u8]) -> Address

Create a new byte array from the given slice src, right-padding it with zeroes if necessary.

§Note

The given bytes are interpreted in big endian order.

§Panics

Panics if src.len() > N.

Source

pub const fn into_array(self) -> [u8; 20]

Returns the inner bytes array.

Source

pub fn covers(&self, b: &Address) -> bool

Returns true if all bits set in b are also set in self.

Source

pub const fn const_eq(&self, other: &Address) -> bool

Compile-time equality. NOT constant-time equality.

Source

pub const fn bit_and(self, rhs: Address) -> Address

Computes the bitwise AND of two FixedBytes.

Source

pub const fn bit_or(self, rhs: Address) -> Address

Computes the bitwise OR of two FixedBytes.

Source

pub const fn bit_xor(self, rhs: Address) -> Address

Computes the bitwise XOR of two FixedBytes.

Source§

impl Address

Source

pub fn from_word(word: FixedBytes<32>) -> Address

Creates an Ethereum address from an EVM word’s upper 20 bytes (word[12..]).

§Examples
let word = b256!("000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045");
assert_eq!(Address::from_word(word), address!("d8da6bf26964af9d7eed9e03e53415d37aa96045"));
Source

pub fn into_word(&self) -> FixedBytes<32>

Left-pads the address to 32 bytes (EVM word size).

§Examples
assert_eq!(
    address!("d8da6bf26964af9d7eed9e03e53415d37aa96045").into_word(),
    b256!("000000000000000000000000d8da6bf26964af9d7eed9e03e53415d37aa96045"),
);
Source

pub fn parse_checksummed<S>( s: S, chain_id: Option<u64>, ) -> Result<Address, AddressError>
where S: AsRef<str>,

Parse an Ethereum address, verifying its EIP-55 checksum.

You can optionally specify an EIP-155 chain ID to check the address using EIP-1191.

§Errors

This method returns an error if the provided string does not match the expected checksum.

§Examples
let checksummed = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045";
let address = Address::parse_checksummed(checksummed, None).unwrap();
let expected = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
assert_eq!(address, expected);
Source

pub fn to_checksum(&self, chain_id: Option<u64>) -> String

Encodes an Ethereum address to its EIP-55 checksum into a heap-allocated string.

You can optionally specify an EIP-155 chain ID to encode the address using EIP-1191.

§Examples
let address = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");

let checksummed: String = address.to_checksum(None);
assert_eq!(checksummed, "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045");

let checksummed: String = address.to_checksum(Some(1));
assert_eq!(checksummed, "0xD8Da6bf26964Af9d7EEd9e03e53415d37AA96045");
Source

pub fn to_checksum_raw<'a>( &self, buf: &'a mut [u8], chain_id: Option<u64>, ) -> &'a mut str

Encodes an Ethereum address to its EIP-55 checksum into the given buffer.

For convenience, the buffer is returned as a &mut str, as the bytes are guaranteed to be valid UTF-8.

You can optionally specify an EIP-155 chain ID to encode the address using EIP-1191.

§Panics

Panics if buf is not exactly 42 bytes long.

§Examples
let address = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");
let mut buf = [0; 42];

let checksummed: &mut str = address.to_checksum_raw(&mut buf, None);
assert_eq!(checksummed, "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045");

let checksummed: &mut str = address.to_checksum_raw(&mut buf, Some(1));
assert_eq!(checksummed, "0xD8Da6bf26964Af9d7EEd9e03e53415d37AA96045");
Source

pub fn to_checksum_buffer(&self, chain_id: Option<u64>) -> AddressChecksumBuffer

Encodes an Ethereum address to its EIP-55 checksum into a stack-allocated buffer.

You can optionally specify an EIP-155 chain ID to encode the address using EIP-1191.

§Examples
let address = address!("d8da6bf26964af9d7eed9e03e53415d37aa96045");

let mut buffer: AddressChecksumBuffer = address.to_checksum_buffer(None);
assert_eq!(buffer.as_str(), "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045");

let checksummed: &str = buffer.format(&address, Some(1));
assert_eq!(checksummed, "0xD8Da6bf26964Af9d7EEd9e03e53415d37AA96045");
Source

pub fn create(&self, nonce: u64) -> Address

Computes the create address for this address and nonce:

keccak256(rlp([sender, nonce]))[12:]

§Examples
let sender = address!("b20a608c624Ca5003905aA834De7156C68b2E1d0");

let expected = address!("00000000219ab540356cBB839Cbe05303d7705Fa");
assert_eq!(sender.create(0), expected);

let expected = address!("e33c6e89e69d085897f98e92b06ebd541d1daa99");
assert_eq!(sender.create(1), expected);
Source

pub fn create2_from_code<S, C>(&self, salt: S, init_code: C) -> Address
where S: Borrow<[u8; 32]>, C: AsRef<[u8]>,

Computes the CREATE2 address of a smart contract as specified in EIP-1014:

keccak256(0xff ++ address ++ salt ++ keccak256(init_code))[12:]

The init_code is the code that, when executed, produces the runtime bytecode that will be placed into the state, and which typically is used by high level languages to implement a ‘constructor’.

§Examples
let address = address!("8ba1f109551bD432803012645Ac136ddd64DBA72");
let salt = b256!("7c5ea36004851c764c44143b1dcb59679b11c9a68e5f41497f6cf3d480715331");
let init_code = bytes!("6394198df16000526103ff60206004601c335afa6040516060f3");
let expected = address!("533ae9d683B10C02EbDb05471642F85230071FC3");
assert_eq!(address.create2_from_code(salt, init_code), expected);
Source

pub fn create2<S, H>(&self, salt: S, init_code_hash: H) -> Address
where S: Borrow<[u8; 32]>, H: Borrow<[u8; 32]>,

Computes the CREATE2 address of a smart contract as specified in EIP-1014, taking the pre-computed hash of the init code as input:

keccak256(0xff ++ address ++ salt ++ init_code_hash)[12:]

The init_code is the code that, when executed, produces the runtime bytecode that will be placed into the state, and which typically is used by high level languages to implement a ‘constructor’.

§Examples
let address = address!("5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f");
let salt = b256!("2b2f5776e38002e0c013d0d89828fdb06fee595ea2d5ed4b194e3883e823e350");
let init_code_hash = b256!("96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f");
let expected = address!("0d4a11d5EEaaC28EC3F61d100daF4d40471f1852");
assert_eq!(address.create2(salt, init_code_hash), expected);
Source

pub fn from_raw_public_key(pubkey: &[u8]) -> Address

Instantiate by hashing public key bytes.

§Panics

If the input is not exactly 64 bytes

Source

pub fn from_public_key(pubkey: &VerifyingKey<Secp256k1>) -> Address

Converts an ECDSA verifying key to its corresponding Ethereum address.

Source

pub fn from_private_key(private_key: &SigningKey<Secp256k1>) -> Address

Converts an ECDSA signing key to its corresponding Ethereum address.

Methods from Deref<Target = FixedBytes<20>>§

Source

pub const ZERO: FixedBytes<N> = _

Source

pub fn randomize(&mut self)

Fills this FixedBytes with cryptographically random content.

§Panics

Panics if the underlying call to getrandom_uninit fails.

Source

pub fn try_randomize(&mut self) -> Result<(), Error>

Tries to fill this FixedBytes with cryptographically random content.

§Errors

This function only propagates the error from the underlying call to getrandom_uninit.

Source

pub fn randomize_with<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized,

Fills this FixedBytes with the given random number generator.

Source

pub fn as_slice(&self) -> &[u8]

Returns a slice containing the entire array. Equivalent to &s[..].

Source

pub fn as_mut_slice(&mut self) -> &mut [u8]

Returns a mutable slice containing the entire array. Equivalent to &mut s[..].

Source

pub fn covers(&self, other: &FixedBytes<N>) -> bool

Returns true if all bits set in self are also set in b.

Source

pub fn const_eq(&self, other: &FixedBytes<N>) -> bool

Compile-time equality. NOT constant-time equality.

Source

pub fn is_zero(&self) -> bool

Returns true if no bits are set.

Source

pub fn const_is_zero(&self) -> bool

Returns true if no bits are set.

Methods from Deref<Target = [u8; N]>§

Source

pub fn as_ascii(&self) -> Option<&[AsciiChar; N]>

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into an array of ASCII characters, or returns None if any of the characters is non-ASCII.

§Examples
#![feature(ascii_char)]

const HEX_DIGITS: [std::ascii::Char; 16] =
    *b"0123456789abcdef".as_ascii().unwrap();

assert_eq!(HEX_DIGITS[1].as_str(), "1");
assert_eq!(HEX_DIGITS[10].as_str(), "a");
Source

pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into an array of ASCII characters, without checking whether they’re valid.

§Safety

Every byte in the array must be in 0..=127, or else this is UB.

1.57.0 · Source

pub fn as_slice(&self) -> &[T]

Returns a slice containing the entire array. Equivalent to &s[..].

1.57.0 · Source

pub fn as_mut_slice(&mut self) -> &mut [T]

Returns a mutable slice containing the entire array. Equivalent to &mut s[..].

1.77.0 · Source

pub fn each_ref(&self) -> [&T; N]

Borrows each element and returns an array of references with the same size as self.

§Example
let floats = [3.1, 2.7, -1.0];
let float_refs: [&f64; 3] = floats.each_ref();
assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);

This method is particularly useful if combined with other methods, like map. This way, you can avoid moving the original array if its elements are not Copy.

let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
let is_ascii = strings.each_ref().map(|s| s.is_ascii());
assert_eq!(is_ascii, [true, false, true]);

// We can still access the original array: it has not been moved.
assert_eq!(strings.len(), 3);
1.77.0 · Source

pub fn each_mut(&mut self) -> [&mut T; N]

Borrows each element mutably and returns an array of mutable references with the same size as self.

§Example

let mut floats = [3.1, 2.7, -1.0];
let float_refs: [&mut f64; 3] = floats.each_mut();
*float_refs[0] = 0.0;
assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
assert_eq!(floats, [0.0, 2.7, -1.0]);
Source

pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_array_ref::<0>();
   assert_eq!(left, &[]);
   assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<2>();
    assert_eq!(left, &[1, 2]);
    assert_eq!(right, &[3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<6>();
    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
    assert_eq!(right, &[]);
}
Source

pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T])

🔬This is a nightly-only experimental API. (split_array)

Divides one mutable array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_array_mut::<2>();
assert_eq!(left, &mut [1, 0][..]);
assert_eq!(right, &mut [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
Source

pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.rsplit_array_ref::<0>();
   assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
   assert_eq!(right, &[]);
}

{
    let (left, right) = v.rsplit_array_ref::<2>();
    assert_eq!(left, &[1, 2, 3, 4]);
    assert_eq!(right, &[5, 6]);
}

{
    let (left, right) = v.rsplit_array_ref::<6>();
    assert_eq!(left, &[]);
    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}
Source

pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one mutable array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.rsplit_array_mut::<4>();
assert_eq!(left, &mut [1, 0]);
assert_eq!(right, &mut [3, 0, 5, 6][..]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);

Trait Implementations§

Source§

impl<'a> Arbitrary<'a> for Address

Source§

fn arbitrary(u: &mut Unstructured<'a>) -> Result<Address, Error>

Generate an arbitrary value of Self from the given unstructured data. Read more
Source§

fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Address, Error>

Generate an arbitrary value of Self from the entirety of the given unstructured data. Read more
Source§

fn size_hint(depth: usize) -> (usize, Option<usize>)

Get a size hint for how many bytes out of an Unstructured this type needs to construct itself. Read more
Source§

fn try_size_hint( depth: usize, ) -> Result<(usize, Option<usize>), MaxRecursionReached>

Get a size hint for how many bytes out of an Unstructured this type needs to construct itself. Read more
Source§

impl Arbitrary for Address

Source§

type Parameters = <FixedBytes<20> as Arbitrary>::Parameters

The type of parameters that arbitrary_with accepts for configuration of the generated Strategy. Parameters must implement Default.
Source§

type Strategy = Map<<FixedBytes<20> as Arbitrary>::Strategy, fn(_: FixedBytes<20>) -> Address>

The type of Strategy used to generate values of type Self.
Source§

fn arbitrary() -> <Address as Arbitrary>::Strategy

Generates a Strategy for producing arbitrary values of type the implementing type (Self). Read more
Source§

fn arbitrary_with( args: <Address as Arbitrary>::Parameters, ) -> <Address as Arbitrary>::Strategy

Generates a Strategy for producing arbitrary values of type the implementing type (Self). The strategy is passed the arguments given in args. Read more
Source§

impl AsMut<[u8]> for Address

Source§

fn as_mut(&mut self) -> &mut [u8]

Converts this type into a mutable reference of the (usually inferred) input type.
Source§

impl AsMut<[u8; 20]> for Address

Source§

fn as_mut(&mut self) -> &mut [u8; 20]

Converts this type into a mutable reference of the (usually inferred) input type.
Source§

impl AsMut<FixedBytes<20>> for Address

Source§

fn as_mut(&mut self) -> &mut FixedBytes<20>

Converts this type into a mutable reference of the (usually inferred) input type.
Source§

impl AsRef<[u8]> for Address

Source§

fn as_ref(&self) -> &[u8]

Converts this type into a shared reference of the (usually inferred) input type.
Source§

impl AsRef<[u8; 20]> for Address

Source§

fn as_ref(&self) -> &[u8; 20]

Converts this type into a shared reference of the (usually inferred) input type.
Source§

impl AsRef<FixedBytes<20>> for Address

Source§

fn as_ref(&self) -> &FixedBytes<20>

Converts this type into a shared reference of the (usually inferred) input type.
Source§

impl BitAnd for Address

Source§

type Output = Address

The resulting type after applying the & operator.
Source§

fn bitand(self, rhs: Address) -> Address

Performs the & operation. Read more
Source§

impl BitAndAssign for Address

Source§

fn bitand_assign(&mut self, rhs: Address)

Performs the &= operation. Read more
Source§

impl BitOr for Address

Source§

type Output = Address

The resulting type after applying the | operator.
Source§

fn bitor(self, rhs: Address) -> Address

Performs the | operation. Read more
Source§

impl BitOrAssign for Address

Source§

fn bitor_assign(&mut self, rhs: Address)

Performs the |= operation. Read more
Source§

impl BitXor for Address

Source§

type Output = Address

The resulting type after applying the ^ operator.
Source§

fn bitxor(self, rhs: Address) -> Address

Performs the ^ operation. Read more
Source§

impl BitXorAssign for Address

Source§

fn bitxor_assign(&mut self, rhs: Address)

Performs the ^= operation. Read more
Source§

impl Borrow<[u8]> for &Address

Source§

fn borrow(&self) -> &[u8]

Immutably borrows from an owned value. Read more
Source§

impl Borrow<[u8]> for &mut Address

Source§

fn borrow(&self) -> &[u8]

Immutably borrows from an owned value. Read more
Source§

impl Borrow<[u8]> for Address

Source§

fn borrow(&self) -> &[u8]

Immutably borrows from an owned value. Read more
Source§

impl Borrow<[u8; 20]> for &Address

Source§

fn borrow(&self) -> &[u8; 20]

Immutably borrows from an owned value. Read more
Source§

impl Borrow<[u8; 20]> for &mut Address

Source§

fn borrow(&self) -> &[u8; 20]

Immutably borrows from an owned value. Read more
Source§

impl Borrow<[u8; 20]> for Address

Source§

fn borrow(&self) -> &[u8; 20]

Immutably borrows from an owned value. Read more
Source§

impl BorrowMut<[u8]> for &mut Address

Source§

fn borrow_mut(&mut self) -> &mut [u8]

Mutably borrows from an owned value. Read more
Source§

impl BorrowMut<[u8]> for Address

Source§

fn borrow_mut(&mut self) -> &mut [u8]

Mutably borrows from an owned value. Read more
Source§

impl BorrowMut<[u8; 20]> for &mut Address

Source§

fn borrow_mut(&mut self) -> &mut [u8; 20]

Mutably borrows from an owned value. Read more
Source§

impl BorrowMut<[u8; 20]> for Address

Source§

fn borrow_mut(&mut self) -> &mut [u8; 20]

Mutably borrows from an owned value. Read more
Source§

impl Clone for Address

Source§

fn clone(&self) -> Address

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Address

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Decodable for Address

Source§

fn decode(buf: &mut &[u8]) -> Result<Address, Error>

Decodes the blob into the appropriate type. buf must be advanced past the decoded object.
Source§

impl Default for Address

Source§

fn default() -> Address

Returns the “default value” for a type. Read more
Source§

impl Deref for Address

Source§

type Target = FixedBytes<20>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<Address as Deref>::Target

Dereferences the value.
Source§

impl DerefMut for Address

Source§

fn deref_mut(&mut self) -> &mut <Address as Deref>::Target

Mutably dereferences the value.
Source§

impl<'de> Deserialize<'de> for Address

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Address, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Display for Address

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Encodable for Address

Source§

fn length(&self) -> usize

Returns the length of the encoding of this type in bytes. Read more
Source§

fn encode(&self, out: &mut dyn BufMut)

Encodes the type into the out buffer.
Source§

impl<'a> From<&'a [u8; 20]> for &'a Address

Source§

fn from(value: &'a [u8; 20]) -> &'a Address

Converts to this type from the input type.
Source§

impl<'a> From<&'a [u8; 20]> for Address

Source§

fn from(value: &'a [u8; 20]) -> Address

Converts to this type from the input type.
Source§

impl<'a> From<&'a Address> for &'a [u8; 20]

Source§

fn from(value: &'a Address) -> &'a [u8; 20]

Converts to this type from the input type.
Source§

impl<'a> From<&'a mut [u8; 20]> for &'a Address

Source§

fn from(value: &'a mut [u8; 20]) -> &'a Address

Converts to this type from the input type.
Source§

impl<'a> From<&'a mut [u8; 20]> for &'a mut Address

Source§

fn from(value: &'a mut [u8; 20]) -> &'a mut Address

Converts to this type from the input type.
Source§

impl<'a> From<&'a mut [u8; 20]> for Address

Source§

fn from(value: &'a mut [u8; 20]) -> Address

Converts to this type from the input type.
Source§

impl<'a> From<&'a mut Address> for &'a [u8; 20]

Source§

fn from(value: &'a mut Address) -> &'a [u8; 20]

Converts to this type from the input type.
Source§

impl<'a> From<&'a mut Address> for &'a mut [u8; 20]

Source§

fn from(value: &'a mut Address) -> &'a mut [u8; 20]

Converts to this type from the input type.
Source§

impl From<[u8; 20]> for Address

Source§

fn from(value: [u8; 20]) -> Address

Converts to this type from the input type.
Source§

impl From<Address> for [u8; 20]

Source§

fn from(value: Address) -> [u8; 20]

Converts to this type from the input type.
Source§

impl From<Address> for FixedBytes<20>

Source§

fn from(value: Address) -> FixedBytes<20>

Converts to this type from the input type.
Source§

impl From<Address> for TxKind

Source§

fn from(value: Address) -> TxKind

Creates a TxKind::Call with the given address.

Source§

impl From<Address> for Uint<160, 3>

Source§

fn from(value: Address) -> Uint<160, 3>

Converts to this type from the input type.
Source§

impl From<FixedBytes<20>> for Address

Source§

fn from(value: FixedBytes<20>) -> Address

Converts to this type from the input type.
Source§

impl From<Uint<160, 3>> for Address

Source§

fn from(value: Uint<160, 3>) -> Address

Converts to this type from the input type.
Source§

impl FromHex for Address

Source§

type Error = FromHexError

The associated error which can be returned from parsing.
Source§

fn from_hex<T>(hex: T) -> Result<Address, <Address as FromHex>::Error>
where T: AsRef<[u8]>,

Creates an instance of type Self from the given hex string, or fails with a custom error type. Read more
Source§

impl FromStr for Address

Source§

type Err = <FixedBytes<20> as FromStr>::Err

The associated error which can be returned from parsing.
Source§

fn from_str(src: &str) -> Result<Address, <Address as FromStr>::Err>

Parses a string s to return a value of this type. Read more
Source§

impl Hash for Address

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<__IdxT> Index<__IdxT> for Address
where FixedBytes<20>: Index<__IdxT>,

Source§

type Output = <FixedBytes<20> as Index<__IdxT>>::Output

The returned type after indexing.
Source§

fn index(&self, idx: __IdxT) -> &<Address as Index<__IdxT>>::Output

Performs the indexing (container[index]) operation. Read more
Source§

impl<__IdxT> IndexMut<__IdxT> for Address
where FixedBytes<20>: IndexMut<__IdxT>,

Source§

fn index_mut(&mut self, idx: __IdxT) -> &mut <Address as Index<__IdxT>>::Output

Performs the mutable indexing (container[index]) operation. Read more
Source§

impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime Address
where &'__deriveMoreLifetime FixedBytes<20>: IntoIterator,

Source§

type Item = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = <&'__deriveMoreLifetime FixedBytes<20> as IntoIterator>::IntoIter

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> <&'__deriveMoreLifetime Address as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
Source§

impl<'__deriveMoreLifetime> IntoIterator for &'__deriveMoreLifetime mut Address
where &'__deriveMoreLifetime mut FixedBytes<20>: IntoIterator,

Source§

type Item = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = <&'__deriveMoreLifetime mut FixedBytes<20> as IntoIterator>::IntoIter

Which kind of iterator are we turning this into?
Source§

fn into_iter( self, ) -> <&'__deriveMoreLifetime mut Address as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
Source§

impl IntoIterator for Address

Source§

type Item = <FixedBytes<20> as IntoIterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = <FixedBytes<20> as IntoIterator>::IntoIter

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> <Address as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
Source§

impl LowerHex for Address

Source§

fn fmt(&self, __derive_more_f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl MaxEncodedLenAssoc for Address

Source§

const LEN: usize = 21usize

The maximum length.
Source§

impl Not for Address

Source§

type Output = Address

The resulting type after applying the ! operator.
Source§

fn not(self) -> Address

Performs the unary ! operation. Read more
Source§

impl Ord for Address

Source§

fn cmp(&self, other: &Address) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl PartialEq<&[u8]> for Address

Source§

fn eq(&self, other: &&[u8]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<&[u8; 20]> for Address

Source§

fn eq(&self, other: &&[u8; 20]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<&Address> for [u8]

Source§

fn eq(&self, other: &&Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<&Address> for [u8; 20]

Source§

fn eq(&self, other: &&Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<[u8]> for &Address

Source§

fn eq(&self, other: &[u8]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<[u8]> for Address

Source§

fn eq(&self, other: &[u8]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<[u8; 20]> for &Address

Source§

fn eq(&self, other: &[u8; 20]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<[u8; 20]> for Address

Source§

fn eq(&self, other: &[u8; 20]) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Address> for &[u8]

Source§

fn eq(&self, other: &Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Address> for &[u8; 20]

Source§

fn eq(&self, other: &Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Address> for [u8]

Source§

fn eq(&self, other: &Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Address> for [u8; 20]

Source§

fn eq(&self, other: &Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq for Address

Source§

fn eq(&self, other: &Address) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialOrd<&[u8]> for Address

Source§

fn partial_cmp(&self, other: &&[u8]) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<&Address> for [u8]

Source§

fn partial_cmp(&self, other: &&Address) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<[u8]> for &Address

Source§

fn partial_cmp(&self, other: &[u8]) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<[u8]> for Address

Source§

fn partial_cmp(&self, other: &[u8]) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<Address> for &[u8]

Source§

fn partial_cmp(&self, other: &Address) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<Address> for [u8]

Source§

fn partial_cmp(&self, other: &Address) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd for Address

Source§

fn partial_cmp(&self, other: &Address) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl Serialize for Address

Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl<'a> TryFrom<&'a [u8]> for &'a Address

Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from( slice: &'a [u8], ) -> Result<&'a Address, <&'a Address as TryFrom<&'a [u8]>>::Error>

Performs the conversion.
Source§

impl TryFrom<&[u8]> for Address

Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from(slice: &[u8]) -> Result<Address, <Address as TryFrom<&[u8]>>::Error>

Performs the conversion.
Source§

impl<'a> TryFrom<&'a mut [u8]> for &'a mut Address

Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from( slice: &'a mut [u8], ) -> Result<&'a mut Address, <&'a mut Address as TryFrom<&'a mut [u8]>>::Error>

Performs the conversion.
Source§

impl TryFrom<&mut [u8]> for Address

Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from( slice: &mut [u8], ) -> Result<Address, <Address as TryFrom<&mut [u8]>>::Error>

Performs the conversion.
Source§

impl UpperHex for Address

Source§

fn fmt(&self, __derive_more_f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Copy for Address

Source§

impl Eq for Address

Source§

impl MaxEncodedLen<alloy_primitives::::bits::address::{impl#94}::{constant#0}> for Address

Source§

impl StructuralPartialEq for Address

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<A, T> AsBits<T> for A
where A: AsRef<[T]>, T: BitStore,

Source§

fn as_bits<O>(&self) -> &BitSlice<T, O>
where O: BitOrder,

Views self as an immutable bit-slice region with the O ordering.
Source§

fn try_as_bits<O>(&self) -> Result<&BitSlice<T, O>, BitSpanError<T>>
where O: BitOrder,

Attempts to view self as an immutable bit-slice region with the O ordering. Read more
Source§

impl<A, T> AsMutBits<T> for A
where A: AsMut<[T]>, T: BitStore,

Source§

fn as_mut_bits<O>(&mut self) -> &mut BitSlice<T, O>
where O: BitOrder,

Views self as a mutable bit-slice region with the O ordering.
Source§

fn try_as_mut_bits<O>(&mut self) -> Result<&mut BitSlice<T, O>, BitSpanError<T>>
where O: BitOrder,

Attempts to view self as a mutable bit-slice region with the O ordering. Read more
Source§

impl<I> BidiIterator for I

Source§

fn bidi(self, cond: bool) -> Bidi<Self::IntoIter>

Conditionally reverses the direction of iteration. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToHex for T
where T: AsRef<[u8]>,

Source§

fn encode_hex<U>(&self) -> U
where U: FromIterator<char>,

👎Deprecated: use ToHexExt instead
Encode the hex strict representing self into the result. Lower case letters are used (e.g. f9b4ca).
Source§

fn encode_hex_upper<U>(&self) -> U
where U: FromIterator<char>,

👎Deprecated: use ToHexExt instead
Encode the hex strict representing self into the result. Upper case letters are used (e.g. F9B4CA).
Source§

impl<T> ToHex for T
where T: AsRef<[u8]>,

Source§

fn encode_hex<U>(&self) -> U
where U: FromIterator<char>,

Encode the hex strict representing self into the result. Lower case letters are used (e.g. f9b4ca)
Source§

fn encode_hex_upper<U>(&self) -> U
where U: FromIterator<char>,

Encode the hex strict representing self into the result. Upper case letters are used (e.g. F9B4CA)
Source§

impl<T> ToHexExt for T
where T: AsRef<[u8]>,

Source§

fn encode_hex(&self) -> String

Encode the hex strict representing self into the result. Lower case letters are used (e.g. f9b4ca).
Source§

fn encode_hex_upper(&self) -> String

Encode the hex strict representing self into the result. Upper case letters are used (e.g. F9B4CA).
Source§

fn encode_hex_with_prefix(&self) -> String

Encode the hex strict representing self into the result with prefix 0x. Lower case letters are used (e.g. 0xf9b4ca).
Source§

fn encode_hex_upper_with_prefix(&self) -> String

Encode the hex strict representing self into the result with prefix 0X. Upper case letters are used (e.g. 0xF9B4CA).
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,