1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
use alloc::vec::Vec;
use core::hash::{Hash, Hasher};
use num_bigint::traits::ModInverse;
use num_bigint::Sign::Plus;
use num_bigint::{BigInt, BigUint};
use num_integer::Integer;
use num_traits::{FromPrimitive, One, ToPrimitive};
use rand_core::CryptoRngCore;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zeroize::{Zeroize, ZeroizeOnDrop};

use crate::algorithms::generate::generate_multi_prime_key_with_exp;
use crate::algorithms::rsa::{
    compute_modulus, compute_private_exponent_carmicheal, compute_private_exponent_euler_totient,
    recover_primes,
};

use crate::dummy_rng::DummyRng;
use crate::errors::{Error, Result};
use crate::traits::{PaddingScheme, PrivateKeyParts, PublicKeyParts, SignatureScheme};
use crate::CrtValue;

/// Represents the public part of an RSA key.
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RsaPublicKey {
    /// Modulus: product of prime numbers `p` and `q`
    n: BigUint,
    /// Public exponent: power to which a plaintext message is raised in
    /// order to encrypt it.
    ///
    /// Typically 0x10001 (65537)
    e: BigUint,
}

/// Represents a whole RSA key, public and private parts.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RsaPrivateKey {
    /// Public components of the private key.
    pubkey_components: RsaPublicKey,
    /// Private exponent
    pub(crate) d: BigUint,
    /// Prime factors of N, contains >= 2 elements.
    pub(crate) primes: Vec<BigUint>,
    /// precomputed values to speed up private operations
    #[cfg_attr(feature = "serde", serde(skip))]
    pub(crate) precomputed: Option<PrecomputedValues>,
}

impl Eq for RsaPrivateKey {}
impl PartialEq for RsaPrivateKey {
    #[inline]
    fn eq(&self, other: &RsaPrivateKey) -> bool {
        self.pubkey_components == other.pubkey_components
            && self.d == other.d
            && self.primes == other.primes
    }
}

impl AsRef<RsaPublicKey> for RsaPrivateKey {
    fn as_ref(&self) -> &RsaPublicKey {
        &self.pubkey_components
    }
}

impl Hash for RsaPrivateKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        // Domain separator for RSA private keys
        state.write(b"RsaPrivateKey");
        Hash::hash(&self.pubkey_components, state);
    }
}

impl Drop for RsaPrivateKey {
    fn drop(&mut self) {
        self.d.zeroize();
        self.primes.zeroize();
        self.precomputed.zeroize();
    }
}

impl ZeroizeOnDrop for RsaPrivateKey {}

#[derive(Debug, Clone)]
pub(crate) struct PrecomputedValues {
    /// D mod (P-1)
    pub(crate) dp: BigUint,
    /// D mod (Q-1)
    pub(crate) dq: BigUint,
    /// Q^-1 mod P
    pub(crate) qinv: BigInt,

    /// CRTValues is used for the 3rd and subsequent primes. Due to a
    /// historical accident, the CRT for the first two primes is handled
    /// differently in PKCS#1 and interoperability is sufficiently
    /// important that we mirror this.
    pub(crate) crt_values: Vec<CrtValue>,
}

impl Zeroize for PrecomputedValues {
    fn zeroize(&mut self) {
        self.dp.zeroize();
        self.dq.zeroize();
        self.qinv.zeroize();
        for val in self.crt_values.iter_mut() {
            val.zeroize();
        }
        self.crt_values.clear();
    }
}

impl Drop for PrecomputedValues {
    fn drop(&mut self) {
        self.zeroize();
    }
}

impl From<RsaPrivateKey> for RsaPublicKey {
    fn from(private_key: RsaPrivateKey) -> Self {
        (&private_key).into()
    }
}

impl From<&RsaPrivateKey> for RsaPublicKey {
    fn from(private_key: &RsaPrivateKey) -> Self {
        let n = private_key.n().clone();
        let e = private_key.e().clone();
        RsaPublicKey { n, e }
    }
}

impl PublicKeyParts for RsaPublicKey {
    fn n(&self) -> &BigUint {
        &self.n
    }

    fn e(&self) -> &BigUint {
        &self.e
    }
}

impl RsaPublicKey {
    /// Encrypt the given message.
    pub fn encrypt<R: CryptoRngCore, P: PaddingScheme>(
        &self,
        rng: &mut R,
        padding: P,
        msg: &[u8],
    ) -> Result<Vec<u8>> {
        padding.encrypt(rng, self, msg)
    }

    /// Verify a signed message.
    ///
    /// `hashed` must be the result of hashing the input using the hashing function
    /// passed in through `hash`.
    ///
    /// If the message is valid `Ok(())` is returned, otherwise an `Err` indicating failure.
    pub fn verify<S: SignatureScheme>(&self, scheme: S, hashed: &[u8], sig: &[u8]) -> Result<()> {
        scheme.verify(self, hashed, sig)
    }
}

impl RsaPublicKey {
    /// Minimum value of the public exponent `e`.
    pub const MIN_PUB_EXPONENT: u64 = 2;

    /// Maximum value of the public exponent `e`.
    pub const MAX_PUB_EXPONENT: u64 = (1 << 33) - 1;

    /// Maximum size of the modulus `n` in bits.
    pub const MAX_SIZE: usize = 4096;

    /// Create a new public key from its components.
    ///
    /// This function accepts public keys with a modulus size up to 4096-bits,
    /// i.e. [`RsaPublicKey::MAX_SIZE`].
    pub fn new(n: BigUint, e: BigUint) -> Result<Self> {
        Self::new_with_max_size(n, e, Self::MAX_SIZE)
    }

    /// Create a new public key from its components.
    pub fn new_with_max_size(n: BigUint, e: BigUint, max_size: usize) -> Result<Self> {
        let k = Self { n, e };
        check_public_with_max_size(&k, max_size)?;
        Ok(k)
    }

    /// Create a new public key, bypassing checks around the modulus and public
    /// exponent size.
    ///
    /// This method is not recommended, and only intended for unusual use cases.
    /// Most applications should use [`RsaPublicKey::new`] or
    /// [`RsaPublicKey::new_with_max_size`] instead.
    pub fn new_unchecked(n: BigUint, e: BigUint) -> Self {
        Self { n, e }
    }
}

impl PublicKeyParts for RsaPrivateKey {
    fn n(&self) -> &BigUint {
        &self.pubkey_components.n
    }

    fn e(&self) -> &BigUint {
        &self.pubkey_components.e
    }
}

impl RsaPrivateKey {
    /// Default exponent for RSA keys.
    const EXP: u64 = 65537;

    /// Generate a new Rsa key pair of the given bit size using the passed in `rng`.
    pub fn new<R: CryptoRngCore + ?Sized>(rng: &mut R, bit_size: usize) -> Result<RsaPrivateKey> {
        let exp = BigUint::from_u64(Self::EXP).expect("invalid static exponent");
        Self::new_with_exp(rng, bit_size, &exp)
    }

    /// Generate a new RSA key pair of the given bit size and the public exponent
    /// using the passed in `rng`.
    ///
    /// Unless you have specific needs, you should use `RsaPrivateKey::new` instead.
    pub fn new_with_exp<R: CryptoRngCore + ?Sized>(
        rng: &mut R,
        bit_size: usize,
        exp: &BigUint,
    ) -> Result<RsaPrivateKey> {
        let components = generate_multi_prime_key_with_exp(rng, 2, bit_size, exp)?;
        RsaPrivateKey::from_components(components.n, components.e, components.d, components.primes)
    }

    /// Constructs an RSA key pair from individual components:
    ///
    /// - `n`: RSA modulus
    /// - `e`: public exponent (i.e. encrypting exponent)
    /// - `d`: private exponent (i.e. decrypting exponent)
    /// - `primes`: prime factors of `n`: typically two primes `p` and `q`. More than two primes can
    ///   be provided for multiprime RSA, however this is generally not recommended. If no `primes`
    ///   are provided, a prime factor recovery algorithm will be employed to attempt to recover the
    ///   factors (as described in [NIST SP 800-56B Revision 2] Appendix C.2). This algorithm only
    ///   works if there are just two prime factors `p` and `q` (as opposed to multiprime), and `e`
    ///   is between 2^16 and 2^256.
    ///
    ///  [NIST SP 800-56B Revision 2]: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
    pub fn from_components(
        n: BigUint,
        e: BigUint,
        d: BigUint,
        mut primes: Vec<BigUint>,
    ) -> Result<RsaPrivateKey> {
        let mut should_validate = false;
        if primes.len() < 2 {
            if !primes.is_empty() {
                return Err(Error::NprimesTooSmall);
            }
            // Recover `p` and `q` from `d`.
            // See method in Appendix C.2: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
            let (p, q) = recover_primes(&n, &e, &d)?;
            primes.push(p);
            primes.push(q);
            should_validate = true;
        }

        let mut k = RsaPrivateKey {
            pubkey_components: RsaPublicKey { n, e },
            d,
            primes,
            precomputed: None,
        };

        // Validate the key if we had to recover the primes.
        if should_validate {
            k.validate()?;
        }

        // precompute when possible, ignore error otherwise.
        let _ = k.precompute();

        Ok(k)
    }

    /// Constructs an RSA key pair from its two primes p and q.
    ///
    /// This will rebuild the private exponent and the modulus.
    ///
    /// Private exponent will be rebuilt using the method defined in
    /// [NIST 800-56B Section 6.2.1](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf#page=47).
    pub fn from_p_q(p: BigUint, q: BigUint, public_exponent: BigUint) -> Result<RsaPrivateKey> {
        if p == q {
            return Err(Error::InvalidPrime);
        }

        let n = compute_modulus(&[p.clone(), q.clone()]);
        let d = compute_private_exponent_carmicheal(&p, &q, &public_exponent)?;

        Self::from_components(n, public_exponent, d, vec![p, q])
    }

    /// Constructs an RSA key pair from its primes.
    ///
    /// This will rebuild the private exponent and the modulus.
    pub fn from_primes(primes: Vec<BigUint>, public_exponent: BigUint) -> Result<RsaPrivateKey> {
        if primes.len() < 2 {
            return Err(Error::NprimesTooSmall);
        }

        // Makes sure that primes is pairwise unequal.
        for (i, prime1) in primes.iter().enumerate() {
            for prime2 in primes.iter().take(i) {
                if prime1 == prime2 {
                    return Err(Error::InvalidPrime);
                }
            }
        }

        let n = compute_modulus(&primes);
        let d = compute_private_exponent_euler_totient(&primes, &public_exponent)?;

        Self::from_components(n, public_exponent, d, primes)
    }

    /// Get the public key from the private key, cloning `n` and `e`.
    ///
    /// Generally this is not needed since `RsaPrivateKey` implements the `PublicKey` trait,
    /// but it can occasionally be useful to discard the private information entirely.
    pub fn to_public_key(&self) -> RsaPublicKey {
        self.pubkey_components.clone()
    }

    /// Performs some calculations to speed up private key operations.
    pub fn precompute(&mut self) -> Result<()> {
        if self.precomputed.is_some() {
            return Ok(());
        }

        let dp = &self.d % (&self.primes[0] - BigUint::one());
        let dq = &self.d % (&self.primes[1] - BigUint::one());
        let qinv = self.primes[1]
            .clone()
            .mod_inverse(&self.primes[0])
            .ok_or(Error::InvalidPrime)?;

        let mut r: BigUint = &self.primes[0] * &self.primes[1];
        let crt_values: Vec<CrtValue> = {
            let mut values = Vec::with_capacity(self.primes.len() - 2);
            for prime in &self.primes[2..] {
                let res = CrtValue {
                    exp: BigInt::from_biguint(Plus, &self.d % (prime - BigUint::one())),
                    r: BigInt::from_biguint(Plus, r.clone()),
                    coeff: BigInt::from_biguint(
                        Plus,
                        r.clone()
                            .mod_inverse(prime)
                            .ok_or(Error::InvalidCoefficient)?
                            .to_biguint()
                            .unwrap(),
                    ),
                };
                r *= prime;

                values.push(res);
            }
            values
        };

        self.precomputed = Some(PrecomputedValues {
            dp,
            dq,
            qinv,
            crt_values,
        });

        Ok(())
    }

    /// Clears precomputed values by setting to None
    pub fn clear_precomputed(&mut self) {
        self.precomputed = None;
    }

    /// Compute CRT coefficient: `(1/q) mod p`.
    pub fn crt_coefficient(&self) -> Option<BigUint> {
        (&self.primes[1]).mod_inverse(&self.primes[0])?.to_biguint()
    }

    /// Performs basic sanity checks on the key.
    /// Returns `Ok(())` if everything is good, otherwise an appropriate error.
    pub fn validate(&self) -> Result<()> {
        check_public(self)?;

        // Check that Πprimes == n.
        let mut m = BigUint::one();
        for prime in &self.primes {
            // Any primes ≤ 1 will cause divide-by-zero panics later.
            if *prime < BigUint::one() {
                return Err(Error::InvalidPrime);
            }
            m *= prime;
        }
        if m != self.pubkey_components.n {
            return Err(Error::InvalidModulus);
        }

        // Check that de ≡ 1 mod p-1, for each prime.
        // This implies that e is coprime to each p-1 as e has a multiplicative
        // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
        // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
        // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
        let mut de = self.e().clone();
        de *= self.d.clone();
        for prime in &self.primes {
            let congruence: BigUint = &de % (prime - BigUint::one());
            if !congruence.is_one() {
                return Err(Error::InvalidExponent);
            }
        }

        Ok(())
    }

    /// Decrypt the given message.
    pub fn decrypt<P: PaddingScheme>(&self, padding: P, ciphertext: &[u8]) -> Result<Vec<u8>> {
        padding.decrypt(Option::<&mut DummyRng>::None, self, ciphertext)
    }

    /// Decrypt the given message.
    ///
    /// Uses `rng` to blind the decryption process.
    pub fn decrypt_blinded<R: CryptoRngCore, P: PaddingScheme>(
        &self,
        rng: &mut R,
        padding: P,
        ciphertext: &[u8],
    ) -> Result<Vec<u8>> {
        padding.decrypt(Some(rng), self, ciphertext)
    }

    /// Sign the given digest.
    pub fn sign<S: SignatureScheme>(&self, padding: S, digest_in: &[u8]) -> Result<Vec<u8>> {
        padding.sign(Option::<&mut DummyRng>::None, self, digest_in)
    }

    /// Sign the given digest using the provided `rng`, which is used in the
    /// following ways depending on the [`SignatureScheme`]:
    ///
    /// - [`Pkcs1v15Sign`][`crate::Pkcs1v15Sign`] padding: uses the RNG
    ///   to mask the private key operation with random blinding, which helps
    ///   mitigate sidechannel attacks.
    /// - [`Pss`][`crate::Pss`] always requires randomness. Use
    ///   [`Pss::new`][`crate::Pss::new`] for a standard RSASSA-PSS signature, or
    ///   [`Pss::new_blinded`][`crate::Pss::new_blinded`] for RSA-BSSA blind
    ///   signatures.
    pub fn sign_with_rng<R: CryptoRngCore, S: SignatureScheme>(
        &self,
        rng: &mut R,
        padding: S,
        digest_in: &[u8],
    ) -> Result<Vec<u8>> {
        padding.sign(Some(rng), self, digest_in)
    }
}

impl PrivateKeyParts for RsaPrivateKey {
    fn d(&self) -> &BigUint {
        &self.d
    }

    fn primes(&self) -> &[BigUint] {
        &self.primes
    }

    fn dp(&self) -> Option<&BigUint> {
        self.precomputed.as_ref().map(|p| &p.dp)
    }

    fn dq(&self) -> Option<&BigUint> {
        self.precomputed.as_ref().map(|p| &p.dq)
    }

    fn qinv(&self) -> Option<&BigInt> {
        self.precomputed.as_ref().map(|p| &p.qinv)
    }

    fn crt_values(&self) -> Option<&[CrtValue]> {
        /* for some reason the standard self.precomputed.as_ref().map() doesn't work */
        if let Some(p) = &self.precomputed {
            Some(p.crt_values.as_slice())
        } else {
            None
        }
    }
}

/// Check that the public key is well formed and has an exponent within acceptable bounds.
#[inline]
pub fn check_public(public_key: &impl PublicKeyParts) -> Result<()> {
    check_public_with_max_size(public_key, RsaPublicKey::MAX_SIZE)
}

/// Check that the public key is well formed and has an exponent within acceptable bounds.
#[inline]
fn check_public_with_max_size(public_key: &impl PublicKeyParts, max_size: usize) -> Result<()> {
    if public_key.n().bits() > max_size {
        return Err(Error::ModulusTooLarge);
    }

    let e = public_key
        .e()
        .to_u64()
        .ok_or(Error::PublicExponentTooLarge)?;

    if public_key.e() >= public_key.n() || public_key.n().is_even() {
        return Err(Error::InvalidModulus);
    }

    if public_key.e().is_even() {
        return Err(Error::InvalidExponent);
    }

    if e < RsaPublicKey::MIN_PUB_EXPONENT {
        return Err(Error::PublicExponentTooSmall);
    }

    if e > RsaPublicKey::MAX_PUB_EXPONENT {
        return Err(Error::PublicExponentTooLarge);
    }

    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::algorithms::rsa::{rsa_decrypt_and_check, rsa_encrypt};

    use hex_literal::hex;
    use num_traits::{FromPrimitive, ToPrimitive};
    use pkcs8::DecodePrivateKey;
    use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};

    #[test]
    fn test_from_into() {
        let private_key = RsaPrivateKey {
            pubkey_components: RsaPublicKey {
                n: BigUint::from_u64(100).unwrap(),
                e: BigUint::from_u64(200).unwrap(),
            },
            d: BigUint::from_u64(123).unwrap(),
            primes: vec![],
            precomputed: None,
        };
        let public_key: RsaPublicKey = private_key.into();

        assert_eq!(public_key.n().to_u64(), Some(100));
        assert_eq!(public_key.e().to_u64(), Some(200));
    }

    fn test_key_basics(private_key: &RsaPrivateKey) {
        private_key.validate().expect("invalid private key");

        assert!(
            private_key.d() < private_key.n(),
            "private exponent too large"
        );

        let pub_key: RsaPublicKey = private_key.clone().into();
        let m = BigUint::from_u64(42).expect("invalid 42");
        let c = rsa_encrypt(&pub_key, &m).expect("encryption successfull");
        let m2 = rsa_decrypt_and_check::<ChaCha8Rng>(private_key, None, &c)
            .expect("unable to decrypt without blinding");
        assert_eq!(m, m2);
        let mut rng = ChaCha8Rng::from_seed([42; 32]);
        let m3 = rsa_decrypt_and_check(private_key, Some(&mut rng), &c)
            .expect("unable to decrypt with blinding");
        assert_eq!(m, m3);
    }

    macro_rules! key_generation {
        ($name:ident, $multi:expr, $size:expr) => {
            #[test]
            fn $name() {
                let mut rng = ChaCha8Rng::from_seed([42; 32]);
                let exp = BigUint::from_u64(RsaPrivateKey::EXP).expect("invalid static exponent");

                for _ in 0..10 {
                    let components =
                        generate_multi_prime_key_with_exp(&mut rng, $multi, $size, &exp).unwrap();
                    let private_key = RsaPrivateKey::from_components(
                        components.n,
                        components.e,
                        components.d,
                        components.primes,
                    )
                    .unwrap();
                    assert_eq!(private_key.n().bits(), $size);

                    test_key_basics(&private_key);
                }
            }
        };
    }

    key_generation!(key_generation_128, 2, 128);
    key_generation!(key_generation_1024, 2, 1024);

    key_generation!(key_generation_multi_3_256, 3, 256);

    key_generation!(key_generation_multi_4_64, 4, 64);

    key_generation!(key_generation_multi_5_64, 5, 64);
    key_generation!(key_generation_multi_8_576, 8, 576);
    key_generation!(key_generation_multi_16_1024, 16, 1024);

    #[test]
    fn test_negative_decryption_value() {
        let private_key = RsaPrivateKey::from_components(
            BigUint::from_bytes_le(&[
                99, 192, 208, 179, 0, 220, 7, 29, 49, 151, 75, 107, 75, 73, 200, 180,
            ]),
            BigUint::from_bytes_le(&[1, 0, 1]),
            BigUint::from_bytes_le(&[
                81, 163, 254, 144, 171, 159, 144, 42, 244, 133, 51, 249, 28, 12, 63, 65,
            ]),
            vec![
                BigUint::from_bytes_le(&[105, 101, 60, 173, 19, 153, 3, 192]),
                BigUint::from_bytes_le(&[235, 65, 160, 134, 32, 136, 6, 241]),
            ],
        )
        .unwrap();

        for _ in 0..1000 {
            test_key_basics(&private_key);
        }
    }

    #[test]
    #[cfg(feature = "serde")]
    fn test_serde() {
        use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
        use serde_test::{assert_tokens, Token};

        let mut rng = ChaCha8Rng::from_seed([42; 32]);
        let priv_key = RsaPrivateKey::new(&mut rng, 64).expect("failed to generate key");

        let priv_tokens = [
            Token::Struct {
                name: "RsaPrivateKey",
                len: 3,
            },
            Token::Str("pubkey_components"),
            Token::Struct {
                name: "RsaPublicKey",
                len: 2,
            },
            Token::Str("n"),
            Token::Seq { len: Some(2) },
            Token::U32(3814409919),
            Token::U32(3429654832),
            Token::SeqEnd,
            Token::Str("e"),
            Token::Seq { len: Some(1) },
            Token::U32(65537),
            Token::SeqEnd,
            Token::StructEnd,
            Token::Str("d"),
            Token::Seq { len: Some(2) },
            Token::U32(1482162201),
            Token::U32(1675500232),
            Token::SeqEnd,
            Token::Str("primes"),
            Token::Seq { len: Some(2) },
            Token::Seq { len: Some(1) },
            Token::U32(4133289821),
            Token::SeqEnd,
            Token::Seq { len: Some(1) },
            Token::U32(3563808971),
            Token::SeqEnd,
            Token::SeqEnd,
            Token::StructEnd,
        ];
        assert_tokens(&priv_key, &priv_tokens);

        let priv_tokens = [
            Token::Struct {
                name: "RsaPublicKey",
                len: 2,
            },
            Token::Str("n"),
            Token::Seq { len: Some(2) },
            Token::U32(3814409919),
            Token::U32(3429654832),
            Token::SeqEnd,
            Token::Str("e"),
            Token::Seq { len: Some(1) },
            Token::U32(65537),
            Token::SeqEnd,
            Token::StructEnd,
        ];
        assert_tokens(&RsaPublicKey::from(priv_key), &priv_tokens);
    }

    #[test]
    fn invalid_coeff_private_key_regression() {
        use base64ct::{Base64, Encoding};

        let n = Base64::decode_vec("wC8GyQvTCZOK+iiBR5fGQCmzRCTWX9TQ3aRG5gGFk0wB6EFoLMAyEEqeG3gS8xhAm2rSWYx9kKufvNat3iWlbSRVqkcbpVAYlj2vTrpqDpJl+6u+zxFYoUEBevlJJkAhl8EuCccOA30fVpcfRvXPTtvRd3yFT9E9EwZljtgSI02w7gZwg7VIxaGeajh5Euz6ZVQZ+qNRKgXrRC7gPRqVyI6Dt0Jc+Su5KBGNn0QcPDzOahWha1ieaeMkFisZ9mdpsJoZ4tw5eicLaUomKzALHXQVt+/rcZSrCd6/7uUo11B/CYBM4UfSpwXaL88J9AE6A5++no9hmJzaF2LLp+Qwx4yY3j9TDutxSAjsraxxJOGZ3XyA9nG++Ybt3cxZ5fP7ROjxCfROBmVv5dYn0O9OBIqYeCH6QraNpZMadlLNIhyMv8Y+P3r5l/PaK4VJaEi5pPosnEPawp0W0yZDzmjk2z1LthaRx0aZVrAjlH0Rb/6goLUQ9qu1xsDtQVVpN4A89ZUmtTWORnnJr0+595eHHxssd2gpzqf4bPjNITdAEuOCCtpvyi4ls23zwuzryUYjcUOEnsXNQ+DrZpLKxdtsD/qNV/j1hfeyBoPllC3cV+6bcGOFcVGbjYqb+Kw1b0+jL69RSKQqgmS+qYqr8c48nDRxyq3QXhR8qtzUwBFSLVk=").unwrap();
        let e = Base64::decode_vec("AQAB").unwrap();
        let d = Base64::decode_vec("qQazSQ+FRN7nVK1bRsROMRB8AmsDwLVEHivlz1V3Td2Dr+oW3YUMgxedhztML1IdQJPq/ad6qErJ6yRFNySVIjDaxzBTOEoB1eHa1btOnBJWb8rVvvjaorixvJ6Tn3i4EuhsvVy9DoR1k4rGj3qSIiFjUVvLRDAbLyhpGgEfsr0Z577yJmTC5E8JLRMOKX8Tmxsk3jPVpsgd65Hu1s8S/ZmabwuHCf9SkdMeY/1bd/9i7BqqJeeDLE4B5x1xcC3z3scqDUTzqGO+vZPhjgprPDRlBamVwgenhr7KwCn8iaLamFinRVwOAag8BeBqOJj7lURiOsKQa9FIX1kdFUS1QMQxgtPycLjkbvCJjriqT7zWKsmJ7l8YLs6Wmm9/+QJRwNCEVdMTXKfCP1cJjudaiskEQThfUldtgu8gUDNYbQ/Filb2eKfiX4h1TiMxZqUZHVZyb9nShbQoXJ3vj/MGVF0QM8TxhXM8r2Lv9gDYU5t9nQlUMLhs0jVjai48jHABbFNyH3sEcOmJOIwJrCXw1dzG7AotwyaEVUHOmL04TffmwCFfnyrLjbFgnyOeoyIIBYjcY7QFRm/9nupXMTH5hZ2qrHfCJIp0KK4tNBdQqmnHapFl5l6Le1s4qBS5bEIzjitobLvAFm9abPlDGfxmY6mlrMK4+nytwF9Ct7wc1AE=").unwrap();
        let primes = vec![
            Base64::decode_vec("9kQWEAzsbzOcdPa+s5wFfw4XDd7bB1q9foZ31b1+TNjGNxbSBCFlDF1q98vwpV6nM8bWDh/wtbNoETSQDgpEnYOQ26LWEw6YY1+q1Q2GGEFceYUf+Myk8/vTc8TN6Zw0bKZBWy10Qo8h7xk4JpzuI7NcxvjJYTkS9aErFxi3vVH0aiZC0tmfaCqr8a2rJxyVwqreRpOjwAWrotMsf2wGsF4ofx5ScoFy5GB5fJkkdOrW1LyTvZAUCX3cstPr19+TNC5zZOk7WzZatnCkN5H5WzalWtZuu0oVL205KPOa3R8V2yv5e6fm0v5fTmqSuvjmaMJLXCN4QJkmIzojO99ckQ==").unwrap(),
            Base64::decode_vec("x8exdMjVA2CiI+Thx7loHtVcevoeE2sZ7btRVAvmBqo+lkHwxb7FHRnWvuj6eJSlD2f0T50EewIhhiW3R9BmktCk7hXjbSCnC1u9Oxc1IAUm/7azRqyfCMx43XhLxpD+xkBCpWkKDLxGczsRwTuaP3lKS3bSdBrNlGmdblubvVBIq4YZ2vXVlnYtza0cS+dgCK7BGTqUsrCUd/ZbIvwcwZkZtpkhj1KQfto9X/0OMurBzAqbkeq1cyRHXHkOfN/qbUIIRqr9Ii7Eswf9Vk8xp2O1Nt8nzcYS9PFD12M5eyaeFEkEYfpNMNGuTzp/31oqVjbpoCxS6vuWAZyADxhISQ==").unwrap(),
            Base64::decode_vec("is7d0LY4HoXszlC2NO7gejkq7XqL4p1W6hZJPYTNx+r37t1CC2n3Vvzg6kNdpRixDhIpXVTLjN9O7UO/XuqSumYKJIKoP52eb4Tg+a3hw5Iz2Zsb5lUTNSLgkQSBPAf71LHxbL82JL4g1nBUog8ae60BwnVArThKY4EwlJguGNw09BAU4lwf6csDl/nX2vfVwiAloYpeZkHL+L8m+bueGZM5KE2jEz+7ztZCI+T+E5i69rZEYDjx0lfLKlEhQlCW3HbCPELqXgNJJkRfi6MP9kXa9lSfnZmoT081RMvqonB/FUa4HOcKyCrw9XZEtnbNCIdbitfDVEX+pSSD7596wQ==").unwrap(),
            Base64::decode_vec("GPs0injugfycacaeIP5jMa/WX55VEnKLDHom4k6WlfDF4L4gIGoJdekcPEUfxOI5faKvHyFwRP1wObkPoRBDM0qZxRfBl4zEtpvjHrd5MibSyJkM8+J0BIKk/nSjbRIGeb3hV5O56PvGB3S0dKhCUnuVObiC+ne7izplsD4OTG70l1Yud33UFntyoMxrxGYLUSqhBMmZfHquJg4NOWOzKNY/K+EcHDLj1Kjvkcgv9Vf7ocsVxvpFdD9uGPceQ6kwRDdEl6mb+6FDgWuXVyqR9+904oanEIkbJ7vfkthagLbEf57dyG6nJlqh5FBZWxGIR72YGypPuAh7qnnqXXjY2Q==").unwrap(),
            Base64::decode_vec("CUWC+hRWOT421kwRllgVjy6FYv6jQUcgDNHeAiYZnf5HjS9iK2ki7v8G5dL/0f+Yf+NhE/4q8w4m8go51hACrVpP1p8GJDjiT09+RsOzITsHwl+ceEKoe56ZW6iDHBLlrNw5/MtcYhKpjNU9KJ2udm5J/c9iislcjgckrZG2IB8ADgXHMEByZ5DgaMl4AKZ1Gx8/q6KftTvmOT5rNTMLi76VN5KWQcDWK/DqXiOiZHM7Nr4dX4me3XeRgABJyNR8Fqxj3N1+HrYLe/zs7LOaK0++F9Ul3tLelhrhsvLxei3oCZkF9A/foD3on3luYA+1cRcxWpSY3h2J4/22+yo4+Q==").unwrap(),
        ];

        RsaPrivateKey::from_components(
            BigUint::from_bytes_be(&n),
            BigUint::from_bytes_be(&e),
            BigUint::from_bytes_be(&d),
            primes.iter().map(|p| BigUint::from_bytes_be(p)).collect(),
        )
        .unwrap();
    }

    #[test]
    fn reject_oversized_private_key() {
        // -----BEGIN PUBLIC KEY-----
        // MIIEIjANBgkqhkiG9w0BAQEFAAOCBA8AMIIECgKCBAEAkMBiB8qsNVXAsJR6Xoto
        // H1r2rtZl/xzUK2tIfy99aPE489u+5tLxCQhQf+a89158vSDpr2/xwgK8w9u0Xpu2
        // m7XRKjVMS0Y6UIINFoeTc87rVXT92Scr47kNVcGmSFXez4BSDpS+LKpWwXN+0AQu
        // +cmcfdtsx2862iEbqQvq4PwKGQJOdOR0yldH8O4yeJK/buvIOXRHjb++vtQND/xi
        // bFGAcd9WJqvaOG7tclhbZ277mbO6ER+y9Lj7AyO8ywybWqNeHaVPHMysPhT7HUWI
        // 17m59i1OpuVwwEnvzDQQEUf9d5hUmkLYb5qQzuf6Ddnx/04QJCKAgkhyr9CXgnV6
        // vEZ3PKtpicCHRxk7eqTEmgBlgwqH5vflRFV1iywQMXJnuRhzWOQaXl/vb8v4HIvF
        // 4TatEZKqfzpbyScLIiYbPEAhHXKdZMd2zY8hkSbicifePApAZmuNpAxxJDZzphh7
        // r4lD6t8MPT/RUAdtrZfihqaBhduFI6YeVIy6emg05M6YWvlUyer7nYGaPRS1JqD4
        // 0v7xOtme5I8Qw6APiFPXhTqBK3occr7TgGb3V3lpC8Eq+esNHrji98R1fITkFXJW
        // KdFcTWjBghPxiobUzMCFUrPIDJcWXeBzrARAryU+hXjEiFfzluXrps0B7RJQ/rLD
        // LXeTn4vovUeHQVHa7YfoyWMy9pfqeVC+56LBK7SEIAvL0I3lrq5vIv+ZIuOAdbVg
        // JiRy8DneCOk2LP3RnA8M0HSevYW93DiC+4h/l4ntjjiOfi6yRVOZ8WbVyXZ/83j4
        // 6+pGWgvi0uMyb+btgOXjBQv7bGqdyHMc5Lqk5bF7ExETx51vKQMYCV4351caS6aX
        // q16lYZATHgbTADEAZHdroDMJB+HMQaze9O6qU5ZO8wxxAjw89xry0dnoOQD/yA4H
        // 7CRCo9vVDpV2hqIvHY9RI2T7cek28kmQpKvNvvK+ovmM138dHKViWULHk0fBRt7m
        // 4wQ+tiL2PmJ/Tr8g1gVhM6S9D1XdE9z0KeDnODCWn1Q8sx2G2ah4ynnYQURDWcwO
        // McAoP6bdJ7cCt+4F2tEsMPf4S/EwlnjvuNoQjvztxCPahYe9EnyggtQXyHJveIn7
        // gDJsP6b93VB6x4QbLy5ch4DUhqDWginuKVeo7CTgDkq03j/IEaS1BHwreSDQceny
        // +bYWONwV+4TMpGytKOHvU5288kmHbyZHdXuaXk8LLqbnqr30fa6Cbp4llCi9sH5a
        // Kmi5jxQfVTe+elkMs7oVsLsVgkZS6NqPcOuEckAFijNqG223+IJoqvifCzO5Bdcs
        // JTOLE+YaUYc8LUJwIaPykgcXmtMvQjeT8MCQ3aAlzkHfDpSvvICrXtqbGiaKolU6
        // mQIDAQAB
        // -----END PUBLIC KEY-----

        let n = BigUint::from_bytes_be(&hex!(
            "
            90c06207caac3555c0b0947a5e8b681f5af6aed665ff1cd42b6b487f2f7d68f1
            38f3dbbee6d2f10908507fe6bcf75e7cbd20e9af6ff1c202bcc3dbb45e9bb69b
            b5d12a354c4b463a50820d16879373ceeb5574fdd9272be3b90d55c1a64855de
            cf80520e94be2caa56c1737ed0042ef9c99c7ddb6cc76f3ada211ba90beae0fc
            0a19024e74e474ca5747f0ee327892bf6eebc83974478dbfbebed40d0ffc626c
            518071df5626abda386eed72585b676efb99b3ba111fb2f4b8fb0323bccb0c9b
            5aa35e1da54f1cccac3e14fb1d4588d7b9b9f62d4ea6e570c049efcc34101147
            fd7798549a42d86f9a90cee7fa0dd9f1ff4e10242280824872afd09782757abc
            46773cab6989c08747193b7aa4c49a0065830a87e6f7e54455758b2c10317267
            b9187358e41a5e5fef6fcbf81c8bc5e136ad1192aa7f3a5bc9270b22261b3c40
            211d729d64c776cd8f219126e27227de3c0a40666b8da40c71243673a6187baf
            8943eadf0c3d3fd150076dad97e286a68185db8523a61e548cba7a6834e4ce98
            5af954c9eafb9d819a3d14b526a0f8d2fef13ad99ee48f10c3a00f8853d7853a
            812b7a1c72bed38066f75779690bc12af9eb0d1eb8e2f7c4757c84e415725629
            d15c4d68c18213f18a86d4ccc08552b3c80c97165de073ac0440af253e8578c4
            8857f396e5eba6cd01ed1250feb2c32d77939f8be8bd47874151daed87e8c963
            32f697ea7950bee7a2c12bb484200bcbd08de5aeae6f22ff9922e38075b56026
            2472f039de08e9362cfdd19c0f0cd0749ebd85bddc3882fb887f9789ed8e388e
            7e2eb2455399f166d5c9767ff378f8ebea465a0be2d2e3326fe6ed80e5e3050b
            fb6c6a9dc8731ce4baa4e5b17b131113c79d6f290318095e37e7571a4ba697ab
            5ea56190131e06d300310064776ba0330907e1cc41acdef4eeaa53964ef30c71
            023c3cf71af2d1d9e83900ffc80e07ec2442a3dbd50e957686a22f1d8f512364
            fb71e936f24990a4abcdbef2bea2f98cd77f1d1ca5625942c79347c146dee6e3
            043eb622f63e627f4ebf20d6056133a4bd0f55dd13dcf429e0e73830969f543c
            b31d86d9a878ca79d841444359cc0e31c0283fa6dd27b702b7ee05dad12c30f7
            f84bf1309678efb8da108efcedc423da8587bd127ca082d417c8726f7889fb80
            326c3fa6fddd507ac7841b2f2e5c8780d486a0d68229ee2957a8ec24e00e4ab4
            de3fc811a4b5047c2b7920d071e9f2f9b61638dc15fb84cca46cad28e1ef539d
            bcf249876f2647757b9a5e4f0b2ea6e7aabdf47dae826e9e259428bdb07e5a2a
            68b98f141f5537be7a590cb3ba15b0bb15824652e8da8f70eb847240058a336a
            1b6db7f88268aaf89f0b33b905d72c25338b13e61a51873c2d427021a3f29207
            179ad32f423793f0c090dda025ce41df0e94afbc80ab5eda9b1a268aa2553a99"
        ));

        let e = BigUint::from_u64(65537).unwrap();

        assert_eq!(
            RsaPublicKey::new(n, e).err().unwrap(),
            Error::ModulusTooLarge
        );
    }

    #[test]
    fn build_key_from_primes() {
        const RSA_2048_PRIV_DER: &[u8] = include_bytes!("../tests/examples/pkcs8/rsa2048-priv.der");
        let ref_key = RsaPrivateKey::from_pkcs8_der(RSA_2048_PRIV_DER).unwrap();
        assert_eq!(ref_key.validate(), Ok(()));

        let primes = ref_key.primes().to_vec();

        let exp = ref_key.e().clone();
        let key =
            RsaPrivateKey::from_primes(primes, exp).expect("failed to import key from primes");
        assert_eq!(key.validate(), Ok(()));

        assert_eq!(key.n(), ref_key.n());

        assert_eq!(key.dp(), ref_key.dp());
        assert_eq!(key.dq(), ref_key.dq());

        assert_eq!(key.d(), ref_key.d());
    }

    #[test]
    fn build_key_from_p_q() {
        const RSA_2048_SP800_PRIV_DER: &[u8] =
            include_bytes!("../tests/examples/pkcs8/rsa2048-sp800-56b-priv.der");
        let ref_key = RsaPrivateKey::from_pkcs8_der(RSA_2048_SP800_PRIV_DER).unwrap();
        assert_eq!(ref_key.validate(), Ok(()));

        let primes = ref_key.primes().to_vec();
        let exp = ref_key.e().clone();

        let key = RsaPrivateKey::from_p_q(primes[0].clone(), primes[1].clone(), exp)
            .expect("failed to import key from primes");
        assert_eq!(key.validate(), Ok(()));

        assert_eq!(key.n(), ref_key.n());

        assert_eq!(key.dp(), ref_key.dp());
        assert_eq!(key.dq(), ref_key.dq());

        assert_eq!(key.d(), ref_key.d());
    }
}