rumqttc_dev_patched/v5/eventloop.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
use super::framed::Network;
use super::mqttbytes::v5::*;
use super::{Incoming, MqttOptions, MqttState, Outgoing, Request, StateError, Transport};
use crate::eventloop::socket_connect;
use crate::framed::AsyncReadWrite;
use crate::notice::NoticeTx;
use crate::NoticeError;
use flume::{bounded, Receiver, Sender};
use tokio::select;
use tokio::time::{self, error::Elapsed, Instant, Sleep};
use std::collections::VecDeque;
use std::io;
use std::pin::Pin;
use std::time::Duration;
use super::mqttbytes::v5::ConnectReturnCode;
#[cfg(any(feature = "use-rustls", feature = "use-native-tls"))]
use crate::tls;
#[cfg(unix)]
use {std::path::Path, tokio::net::UnixStream};
#[cfg(feature = "websocket")]
use {
crate::websockets::{split_url, validate_response_headers, UrlError},
async_tungstenite::tungstenite::client::IntoClientRequest,
ws_stream_tungstenite::WsStream,
};
#[cfg(feature = "proxy")]
use crate::proxy::ProxyError;
/// Critical errors during eventloop polling
#[derive(Debug, thiserror::Error)]
pub enum ConnectionError {
#[error("Mqtt state: {0}")]
MqttState(#[from] StateError),
#[error("Timeout")]
Timeout(#[from] Elapsed),
#[cfg(feature = "websocket")]
#[error("Websocket: {0}")]
Websocket(#[from] async_tungstenite::tungstenite::error::Error),
#[cfg(feature = "websocket")]
#[error("Websocket Connect: {0}")]
WsConnect(#[from] http::Error),
#[cfg(any(feature = "use-rustls", feature = "use-native-tls"))]
#[error("TLS: {0}")]
Tls(#[from] tls::Error),
#[error("I/O: {0}")]
Io(#[from] io::Error),
#[error("Connection refused, return code: `{0:?}`")]
ConnectionRefused(ConnectReturnCode),
#[error("Expected ConnAck packet, received: {0:?}")]
NotConnAck(Box<Packet>),
#[error("Requests done")]
RequestsDone,
#[cfg(feature = "websocket")]
#[error("Invalid Url: {0}")]
InvalidUrl(#[from] UrlError),
#[cfg(feature = "proxy")]
#[error("Proxy Connect: {0}")]
Proxy(#[from] ProxyError),
#[cfg(feature = "websocket")]
#[error("Websocket response validation error: ")]
ResponseValidation(#[from] crate::websockets::ValidationError),
}
/// Eventloop with all the state of a connection
pub struct EventLoop {
/// Options of the current mqtt connection
pub options: MqttOptions,
/// Current state of the connection
pub state: MqttState,
/// Request stream
requests_rx: Receiver<(NoticeTx, Request)>,
/// Requests handle to send requests
pub(crate) requests_tx: Sender<(NoticeTx, Request)>,
/// Pending packets from last session
pub(crate) pending: VecDeque<(NoticeTx, Request)>,
/// Network connection to the broker
network: Option<Network>,
/// Keep alive time
keepalive_timeout: Option<Pin<Box<Sleep>>>,
}
/// Events which can be yielded by the event loop
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Event {
Incoming(Incoming),
Outgoing(Outgoing),
}
impl EventLoop {
/// New MQTT `EventLoop`
///
/// When connection encounters critical errors (like auth failure), user has a choice to
/// access and update `options`, `state` and `requests`.
pub fn new(options: MqttOptions, cap: usize) -> EventLoop {
let (requests_tx, requests_rx) = bounded(cap);
let pending = VecDeque::new();
let inflight_limit = options.outgoing_inflight_upper_limit.unwrap_or(u16::MAX);
let manual_acks = options.manual_acks;
EventLoop {
options,
state: MqttState::new(inflight_limit, manual_acks),
requests_tx,
requests_rx,
pending,
network: None,
keepalive_timeout: None,
}
}
/// Last session might contain packets which aren't acked. MQTT says these packets should be
/// republished in the next session. Move pending messages from state to eventloop, drops the
/// underlying network connection and clears the keepalive timeout if any.
///
/// > NOTE: Use only when EventLoop is blocked on network and unable to immediately handle disconnect.
/// > Also, while this helps prevent data loss, the pending list length should be managed properly.
/// > For this reason we recommend setting [`AsycClient`](super::AsyncClient)'s channel capacity to `0`.
pub fn clean(&mut self) {
self.network = None;
self.keepalive_timeout = None;
self.pending.extend(self.state.clean());
// drain requests from channel which weren't yet received
let requests_in_channel = self.requests_rx.drain();
self.pending.extend(requests_in_channel);
}
/// Yields Next notification or outgoing request and periodically pings
/// the broker. Continuing to poll will reconnect to the broker if there is
/// a disconnection.
/// **NOTE** Don't block this while iterating
pub async fn poll(&mut self) -> Result<Event, ConnectionError> {
if self.network.is_none() {
let (network, connack) = time::timeout(
Duration::from_secs(self.options.connection_timeout()),
connect(&mut self.options),
)
.await??;
// Last session might contain packets which aren't acked. If it's a new session, clear the pending packets.
if !connack.session_present {
for (tx, request) in self.pending.drain(..) {
// If the request is a publish request, send an error to the future that is waiting for the ack.
if let Request::Publish(_) = request {
tx.error(NoticeError::SessionReset)
}
}
}
self.network = Some(network);
if self.keepalive_timeout.is_none() {
self.keepalive_timeout = Some(Box::pin(time::sleep(self.options.keep_alive)));
}
self.state
.handle_incoming_packet(Packet::ConnAck(connack))?;
}
match self.select().await {
Ok(v) => Ok(v),
Err(e) => {
self.clean();
Err(e)
}
}
}
/// Select on network and requests and generate keepalive pings when necessary
async fn select(&mut self) -> Result<Event, ConnectionError> {
let network = self.network.as_mut().unwrap();
// let await_acks = self.state.await_acks;
let inflight_full = self.state.inflight >= self.state.max_outgoing_inflight;
let collision = self.state.collision.is_some();
// Read buffered events from previous polls before calling a new poll
if let Some(event) = self.state.events.pop_front() {
return Ok(event);
}
// this loop is necessary since self.incoming.pop_front() might return None. In that case,
// instead of returning a None event, we try again.
select! {
// Handles pending and new requests.
// If available, prioritises pending requests from previous session.
// Else, pulls next request from user requests channel.
// If conditions in the below branch are for flow control.
// The branch is disabled if there's no pending messages and new user requests
// cannot be serviced due flow control.
// We read next user user request only when inflight messages are < configured inflight
// and there are no collisions while handling previous outgoing requests.
//
// Flow control is based on ack count. If inflight packet count in the buffer is
// less than max_inflight setting, next outgoing request will progress. For this
// to work correctly, broker should ack in sequence (a lot of brokers won't)
//
// E.g If max inflight = 5, user requests will be blocked when inflight queue
// looks like this -> [1, 2, 3, 4, 5].
// If broker acking 2 instead of 1 -> [1, x, 3, 4, 5].
// This pulls next user request. But because max packet id = max_inflight, next
// user request's packet id will roll to 1. This replaces existing packet id 1.
// Resulting in a collision
//
// Eventloop can stop receiving outgoing user requests when previous outgoing
// request collided. I.e collision state. Collision state will be cleared only
// when correct ack is received
// Full inflight queue will look like -> [1a, 2, 3, 4, 5].
// If 3 is acked instead of 1 first -> [1a, 2, x, 4, 5].
// After collision with pkid 1 -> [1b ,2, x, 4, 5].
// 1a is saved to state and event loop is set to collision mode stopping new
// outgoing requests (along with 1b).
o = Self::next_request(
&mut self.pending,
&self.requests_rx,
self.options.pending_throttle
), if !self.pending.is_empty() || (!inflight_full && !collision) => match o {
Ok((tx, request)) => {
if let Some(outgoing) = self.state.handle_outgoing_packet(tx, request)? {
network.write(outgoing).await?;
}
network.flush().await?;
Ok(self.state.events.pop_front().unwrap())
}
Err(_) => Err(ConnectionError::RequestsDone),
},
// Pull a bunch of packets from network, reply in bunch and yield the first item
o = network.readb(&mut self.state) => {
o?;
// flush all the acks and return first incoming packet
network.flush().await?;
Ok(self.state.events.pop_front().unwrap())
},
// We generate pings irrespective of network activity. This keeps the ping logic
// simple. We can change this behavior in future if necessary (to prevent extra pings)
_ = self.keepalive_timeout.as_mut().unwrap() => {
let timeout = self.keepalive_timeout.as_mut().unwrap();
timeout.as_mut().reset(Instant::now() + self.options.keep_alive);
let (tx, _) = NoticeTx::new();
if let Some(outgoing) = self.state.handle_outgoing_packet(tx, Request::PingReq)? {
network.write(outgoing).await?;
}
network.flush().await?;
Ok(self.state.events.pop_front().unwrap())
}
}
}
async fn next_request(
pending: &mut VecDeque<(NoticeTx, Request)>,
rx: &Receiver<(NoticeTx, Request)>,
pending_throttle: Duration,
) -> Result<(NoticeTx, Request), ConnectionError> {
if !pending.is_empty() {
time::sleep(pending_throttle).await;
// We must call .next() AFTER sleep() otherwise .next() would
// advance the iterator but the future might be canceled before return
Ok(pending.pop_front().unwrap())
} else {
match rx.recv_async().await {
Ok(r) => Ok(r),
Err(_) => Err(ConnectionError::RequestsDone),
}
}
}
}
/// This stream internally processes requests from the request stream provided to the eventloop
/// while also consuming byte stream from the network and yielding mqtt packets as the output of
/// the stream.
/// This function (for convenience) includes internal delays for users to perform internal sleeps
/// between re-connections so that cancel semantics can be used during this sleep
async fn connect(options: &mut MqttOptions) -> Result<(Network, ConnAck), ConnectionError> {
// connect to the broker
let mut network = network_connect(options).await?;
// make MQTT connection request (which internally awaits for ack)
let connack = mqtt_connect(options, &mut network).await?;
// Last session might contain packets which aren't acked. MQTT says these packets should be
// republished in the next session
// move pending messages from state to eventloop
// let pending = self.state.clean();
// self.pending = pending.into_iter();
Ok((network, connack))
}
async fn network_connect(options: &MqttOptions) -> Result<Network, ConnectionError> {
let mut max_incoming_pkt_size = Some(options.default_max_incoming_size);
// Override default value if max_packet_size is set on `connect_properties`
if let Some(connect_props) = &options.connect_properties {
if let Some(max_size) = connect_props.max_packet_size {
max_incoming_pkt_size = Some(max_size);
}
}
// Process Unix files early, as proxy is not supported for them.
#[cfg(unix)]
if matches!(options.transport(), Transport::Unix) {
let file = options.broker_addr.as_str();
let socket = UnixStream::connect(Path::new(file)).await?;
let network = Network::new(socket, max_incoming_pkt_size);
return Ok(network);
}
// For websockets domain and port are taken directly from `broker_addr` (which is a url).
let (domain, port) = match options.transport() {
#[cfg(feature = "websocket")]
Transport::Ws => split_url(&options.broker_addr)?,
#[cfg(all(feature = "use-rustls", feature = "websocket"))]
Transport::Wss(_) => split_url(&options.broker_addr)?,
_ => options.broker_address(),
};
let tcp_stream: Box<dyn AsyncReadWrite> = {
#[cfg(feature = "proxy")]
match options.proxy() {
Some(proxy) => {
proxy
.connect(&domain, port, options.network_options())
.await?
}
None => {
let addr = format!("{domain}:{port}");
let tcp = socket_connect(addr, options.network_options()).await?;
Box::new(tcp)
}
}
#[cfg(not(feature = "proxy"))]
{
let addr = format!("{domain}:{port}");
let tcp = socket_connect(addr, options.network_options()).await?;
Box::new(tcp)
}
};
let network = match options.transport() {
Transport::Tcp => Network::new(tcp_stream, max_incoming_pkt_size),
#[cfg(any(feature = "use-native-tls", feature = "use-rustls"))]
Transport::Tls(tls_config) => {
let socket =
tls::tls_connect(&options.broker_addr, options.port, &tls_config, tcp_stream)
.await?;
Network::new(socket, max_incoming_pkt_size)
}
#[cfg(unix)]
Transport::Unix => unreachable!(),
#[cfg(feature = "websocket")]
Transport::Ws => {
let mut request = options.broker_addr.as_str().into_client_request()?;
request
.headers_mut()
.insert("Sec-WebSocket-Protocol", "mqtt".parse().unwrap());
if let Some(request_modifier) = options.request_modifier() {
request = request_modifier(request).await;
}
let (socket, response) =
async_tungstenite::tokio::client_async(request, tcp_stream).await?;
validate_response_headers(response)?;
Network::new(WsStream::new(socket), max_incoming_pkt_size)
}
#[cfg(all(feature = "use-rustls", feature = "websocket"))]
Transport::Wss(tls_config) => {
let mut request = options.broker_addr.as_str().into_client_request()?;
request
.headers_mut()
.insert("Sec-WebSocket-Protocol", "mqtt".parse().unwrap());
if let Some(request_modifier) = options.request_modifier() {
request = request_modifier(request).await;
}
let connector = tls::rustls_connector(&tls_config).await?;
let (socket, response) = async_tungstenite::tokio::client_async_tls_with_connector(
request,
tcp_stream,
Some(connector),
)
.await?;
validate_response_headers(response)?;
Network::new(WsStream::new(socket), max_incoming_pkt_size)
}
};
Ok(network)
}
async fn mqtt_connect(
options: &mut MqttOptions,
network: &mut Network,
) -> Result<ConnAck, ConnectionError> {
let keep_alive = options.keep_alive().as_secs() as u16;
let clean_start = options.clean_start();
let client_id = options.client_id();
let properties = options.connect_properties();
let connect = Connect {
keep_alive,
client_id,
clean_start,
properties,
};
// send mqtt connect packet
network.connect(connect, options).await?;
// validate connack
match network.read().await? {
Incoming::ConnAck(connack) if connack.code == ConnectReturnCode::Success => {
// Override local keep_alive value if set by server.
if let Some(props) = &connack.properties {
if let Some(keep_alive) = props.server_keep_alive {
options.keep_alive = Duration::from_secs(keep_alive as u64);
}
network.set_max_outgoing_size(props.max_packet_size);
}
Ok(connack)
}
Incoming::ConnAck(connack) => Err(ConnectionError::ConnectionRefused(connack.code)),
packet => Err(ConnectionError::NotConnAck(Box::new(packet))),
}
}