Struct rustc_ap_rustc_data_structures::small_c_str::SmallCStr [−][src]
pub struct SmallCStr { /* fields omitted */ }
Expand description
Like SmallVec but for C strings.
Implementations
Methods from Deref<Target = CStr>
pub const fn as_ptr(&self) -> *const i8
1.0.0 (const: 1.32.0)[src]
pub const fn as_ptr(&self) -> *const i8
1.0.0 (const: 1.32.0)[src]Returns the inner pointer to this C string.
The returned pointer will be valid for as long as self
is, and points
to a contiguous region of memory terminated with a 0 byte to represent
the end of the string.
WARNING
The returned pointer is read-only; writing to it (including passing it to C code that writes to it) causes undefined behavior.
It is your responsibility to make sure that the underlying memory is not
freed too early. For example, the following code will cause undefined
behavior when ptr
is used inside the unsafe
block:
use std::ffi::CString; let ptr = CString::new("Hello").expect("CString::new failed").as_ptr(); unsafe { // `ptr` is dangling *ptr; }
This happens because the pointer returned by as_ptr
does not carry any
lifetime information and the CString
is deallocated immediately after
the CString::new("Hello").expect("CString::new failed").as_ptr()
expression is evaluated.
To fix the problem, bind the CString
to a local variable:
use std::ffi::CString; let hello = CString::new("Hello").expect("CString::new failed"); let ptr = hello.as_ptr(); unsafe { // `ptr` is valid because `hello` is in scope *ptr; }
This way, the lifetime of the CString
in hello
encompasses
the lifetime of ptr
and the unsafe
block.
pub fn to_bytes(&self) -> &[u8]ⓘ
1.0.0[src]
pub fn to_bytes(&self) -> &[u8]ⓘ
1.0.0[src]Converts this C string to a byte slice.
The returned slice will not contain the trailing nul terminator that this C string has.
Note: This method is currently implemented as a constant-time cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.
Examples
use std::ffi::CStr; let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); assert_eq!(cstr.to_bytes(), b"foo");
pub fn to_bytes_with_nul(&self) -> &[u8]ⓘ
1.0.0[src]
pub fn to_bytes_with_nul(&self) -> &[u8]ⓘ
1.0.0[src]Converts this C string to a byte slice containing the trailing 0 byte.
This function is the equivalent of CStr::to_bytes
except that it
will retain the trailing nul terminator instead of chopping it off.
Note: This method is currently implemented as a 0-cost cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.
Examples
use std::ffi::CStr; let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
pub fn to_str(&self) -> Result<&str, Utf8Error>
1.4.0[src]
pub fn to_str(&self) -> Result<&str, Utf8Error>
1.4.0[src]Yields a &str
slice if the CStr
contains valid UTF-8.
If the contents of the CStr
are valid UTF-8 data, this
function will return the corresponding &str
slice. Otherwise,
it will return an error with details of where UTF-8 validation failed.
Examples
use std::ffi::CStr; let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed"); assert_eq!(cstr.to_str(), Ok("foo"));
pub fn to_string_lossy(&self) -> Cow<'_, str>
1.4.0[src]
pub fn to_string_lossy(&self) -> Cow<'_, str>
1.4.0[src]Converts a CStr
into a Cow
<
str
>
.
If the contents of the CStr
are valid UTF-8 data, this
function will return a Cow
::
Borrowed
(
&str
)
with the corresponding &str
slice. Otherwise, it will
replace any invalid UTF-8 sequences with
U+FFFD REPLACEMENT CHARACTER
and return a
Cow
::
Owned
(
String
)
with the result.
Examples
Calling to_string_lossy
on a CStr
containing valid UTF-8:
use std::borrow::Cow; use std::ffi::CStr; let cstr = CStr::from_bytes_with_nul(b"Hello World\0") .expect("CStr::from_bytes_with_nul failed"); assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));
Calling to_string_lossy
on a CStr
containing invalid UTF-8:
use std::borrow::Cow; use std::ffi::CStr; let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0") .expect("CStr::from_bytes_with_nul failed"); assert_eq!( cstr.to_string_lossy(), Cow::Owned(String::from("Hello �World")) as Cow<'_, str> );
Trait Implementations
Auto Trait Implementations
impl RefUnwindSafe for SmallCStr
impl Send for SmallCStr
impl Sync for SmallCStr
impl Unpin for SmallCStr
impl UnwindSafe for SmallCStr
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
pub fn borrow_mut(&mut self) -> &mut T
[src]Mutably borrows from an owned value. Read more
impl<T> Instrument for T
[src]
impl<T> Instrument for T
[src]fn instrument(self, span: Span) -> Instrumented<Self>
[src]
fn instrument(self, span: Span) -> Instrumented<Self>
[src]Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>
[src]
fn in_current_span(self) -> Instrumented<Self>
[src]impl<T> ToOwned for T where
T: Clone,
[src]
impl<T> ToOwned for T where
T: Clone,
[src]type Owned = T
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn to_owned(&self) -> T
[src]Creates owned data from borrowed data, usually by cloning. Read more
pub fn clone_into(&self, target: &mut T)
[src]
pub fn clone_into(&self, target: &mut T)
[src]🔬 This is a nightly-only experimental API. (toowned_clone_into
)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
pub fn vzip(self) -> V
impl<'a, T> Captures<'a> for T where
T: ?Sized,
[src]
T: ?Sized,