1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Copyright (c) 2017 Colin Finck, RWTH Aachen University
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use core::convert::TryInto;
use core::sync::atomic::{AtomicUsize, Ordering};
use multiboot::information::{MemoryType, Multiboot};

use crate::arch::x86_64::kernel::{get_limit, get_mbinfo};
use crate::arch::x86_64::mm::paging::{BasePageSize, PageSize};
use crate::arch::x86_64::mm::MEM;
use crate::arch::x86_64::mm::{PhysAddr, VirtAddr};
use crate::mm;
use crate::mm::freelist::{FreeList, FreeListEntry};
use crate::synch::spinlock::*;

static PHYSICAL_FREE_LIST: SpinlockIrqSave<FreeList> = SpinlockIrqSave::new(FreeList::new());
static TOTAL_MEMORY: AtomicUsize = AtomicUsize::new(0);

fn detect_from_multiboot_info() -> Result<(), ()> {
	let mb_info = get_mbinfo();
	if mb_info.is_zero() {
		return Err(());
	}

	let mb = unsafe { Multiboot::from_ptr(mb_info.as_u64(), &mut MEM).unwrap() };
	let all_regions = mb
		.memory_regions()
		.expect("Could not find a memory map in the Multiboot information");
	let ram_regions = all_regions.filter(|m| {
		m.memory_type() == MemoryType::Available
			&& m.base_address() + m.length() > mm::kernel_end_address().as_u64()
	});
	let mut found_ram = false;

	for m in ram_regions {
		found_ram = true;

		let start_address = if m.base_address() <= mm::kernel_start_address().as_u64() {
			mm::kernel_end_address()
		} else {
			VirtAddr(m.base_address())
		};

		let entry = FreeListEntry::new(
			start_address.as_usize(),
			(m.base_address() + m.length()) as usize,
		);
		let _ = TOTAL_MEMORY.fetch_add((m.base_address() + m.length()) as usize, Ordering::SeqCst);
		PHYSICAL_FREE_LIST.lock().list.push_back(entry);
	}

	assert!(
		found_ram,
		"Could not find any available RAM in the Multiboot Memory Map"
	);

	Ok(())
}

fn detect_from_limits() -> Result<(), ()> {
	let apic_gap = 0xFE000000;
	let limit = get_limit();
	if limit == 0 {
		return Err(());
	}

	// add gap for the APIC
	if limit > apic_gap {
		let entry = FreeListEntry::new(mm::kernel_end_address().as_usize(), apic_gap);
		PHYSICAL_FREE_LIST.lock().list.push_back(entry);
		if limit > 0x100000000 {
			let entry = FreeListEntry::new(0x100000000, limit - 0x100000000);
			PHYSICAL_FREE_LIST.lock().list.push_back(entry);
			TOTAL_MEMORY.store(limit - (0x100000000 - apic_gap), Ordering::SeqCst);
		} else {
			TOTAL_MEMORY.store(apic_gap, Ordering::SeqCst);
		}
	} else {
		let entry = FreeListEntry::new(mm::kernel_end_address().as_usize(), limit);
		PHYSICAL_FREE_LIST.lock().list.push_back(entry);
		TOTAL_MEMORY.store(limit, Ordering::SeqCst);
	}

	Ok(())
}

pub fn init() {
	detect_from_multiboot_info()
		.or_else(|_e| detect_from_limits())
		.unwrap();
}

pub fn total_memory_size() -> usize {
	TOTAL_MEMORY.load(Ordering::SeqCst)
}

pub fn allocate(size: usize) -> Result<PhysAddr, ()> {
	assert!(size > 0);
	assert_eq!(
		size % BasePageSize::SIZE,
		0,
		"Size {:#X} is not a multiple of {:#X}",
		size,
		BasePageSize::SIZE
	);

	Ok(PhysAddr(
		PHYSICAL_FREE_LIST
			.lock()
			.allocate(size, None)?
			.try_into()
			.unwrap(),
	))
}

pub fn allocate_aligned(size: usize, alignment: usize) -> Result<PhysAddr, ()> {
	assert!(size > 0);
	assert!(alignment > 0);
	assert_eq!(
		size % alignment,
		0,
		"Size {:#X} is not a multiple of the given alignment {:#X}",
		size,
		alignment
	);
	assert_eq!(
		alignment % BasePageSize::SIZE,
		0,
		"Alignment {:#X} is not a multiple of {:#X}",
		alignment,
		BasePageSize::SIZE
	);

	Ok(PhysAddr(
		PHYSICAL_FREE_LIST
			.lock()
			.allocate(size, Some(alignment))?
			.try_into()
			.unwrap(),
	))
}

/// This function must only be called from mm::deallocate!
/// Otherwise, it may fail due to an empty node pool (POOL.maintain() is called in virtualmem::deallocate)
pub fn deallocate(physical_address: PhysAddr, size: usize) {
	assert!(
		physical_address >= PhysAddr(mm::kernel_end_address().as_u64()),
		"Physical address {:#X} is not >= KERNEL_END_ADDRESS",
		physical_address
	);
	assert!(size > 0);
	assert_eq!(
		size % BasePageSize::SIZE,
		0,
		"Size {:#X} is not a multiple of {:#X}",
		size,
		BasePageSize::SIZE
	);

	PHYSICAL_FREE_LIST
		.lock()
		.deallocate(physical_address.as_usize(), size);
}

pub fn print_information() {
	PHYSICAL_FREE_LIST
		.lock()
		.print_information(" PHYSICAL MEMORY FREE LIST ");
}