1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Copyright (c) 2018 Colin Finck, RWTH Aachen University
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::arch::x86_64::mm::paging::{BasePageSize, PageSize, PageTableEntryFlags};
use crate::arch::x86_64::mm::{paging, virtualmem};
use crate::arch::x86_64::mm::{PhysAddr, VirtAddr};
use crate::x86::io::*;
use core::{mem, slice, str};

/// Memory at this physical address is supposed to contain a pointer to the Extended BIOS Data Area (EBDA).
const EBDA_PTR_LOCATION: PhysAddr = PhysAddr(0x0000_040E);
/// Minimum physical address where a valid EBDA must be located.
const EBDA_MINIMUM_ADDRESS: PhysAddr = PhysAddr(0x400);
/// The size of the EBDA window that is searched for an ACPI RSDP.
const EBDA_WINDOW_SIZE: usize = 1024;
/// The lower bound of the other address range, where the ACPI RSDP could be located.
const RSDP_SEARCH_ADDRESS_LOW: PhysAddr = PhysAddr(0xE_0000);
/// The upper bound of the other address range, where the ACPI RSDP could be located.
const RSDP_SEARCH_ADDRESS_HIGH: PhysAddr = PhysAddr(0xF_FFFF);
/// Length in bytes of the structure, over which the basic (ACPI 1.0) checksum is calculated.
const RSDP_CHECKSUM_LENGTH: usize = 20;
/// Length in byte sof the structure, over which the extended (ACPI 2.0+) checksum is calculated.
const RSDP_XCHECKSUM_LENGTH: usize = 36;

/// ACPI AML opcode indicating that a name follows.
const AML_NAMEOP: u8 = 0x08;
/// ACPI AML opcode indicating that a package follows.
const AML_PACKAGEOP: u8 = 0x12;
/// ACPI AML opcode indicating a single zero byte as the data.
const AML_ZEROOP: u8 = 0x00;
/// ACPI AML opcode indicating a single one byte as the data.
const AML_ONEOP: u8 = 0x01;
/// ACPI AML opcode indicating that a single byte with the data follows.
const AML_BYTEPREFIX: u8 = 0x0A;

/// Bit to enable an ACPI Sleep State.
const SLP_EN: u16 = 1 << 13;

/// The "Multiple APIC Description Table" (MADT) preserved for get_apic_table().
static mut MADT: Option<AcpiTable<'_>> = None;
/// The PM1A Control I/O Port for powering off the computer through ACPI.
static mut PM1A_CNT_BLK: Option<u16> = None;
/// The Sleeping State Type code for powering off the computer through ACPI.
static mut SLP_TYPA: Option<u8> = None;

/// The "Root System Description Pointer" structure providing pointers to all other ACPI tables.
#[repr(C, packed)]
struct AcpiRsdp {
	signature: [u8; 8],
	checksum: u8,
	oem_id: [u8; 6],
	revision: u8,
	rsdt_physical_address: u32,
	length: u32,
	xsdt_physical_address: u64,
	extended_checksum: u8,
	reserved: [u8; 3],
}

impl AcpiRsdp {
	fn oem_id(&self) -> &str {
		unsafe { str::from_utf8_unchecked(&self.oem_id) }
	}

	fn signature(&self) -> &str {
		unsafe { str::from_utf8_unchecked(&self.signature) }
	}
}

/// The header of (almost) every ACPI table.
#[repr(C, packed)]
struct AcpiSdtHeader {
	signature: [u8; 4],
	length: u32,
	revision: u8,
	checksum: u8,
	oem_id: [u8; 6],
	oem_table_id: [u8; 8],
	oem_revision: u32,
	creator_id: u32,
	creator_revision: u32,
}

impl AcpiSdtHeader {
	fn signature(&self) -> &str {
		unsafe { str::from_utf8_unchecked(&self.signature) }
	}
}

/// A convenience structure to work with an ACPI table.
/// Maps a single table to memory and frees the memory when a variable of this structure goes out of scope.
pub struct AcpiTable<'a> {
	header: &'a AcpiSdtHeader,
	allocated_virtual_address: VirtAddr,
	allocated_length: usize,
}

impl<'a> AcpiTable<'a> {
	fn map(physical_address: PhysAddr) -> Self {
		let mut flags = PageTableEntryFlags::empty();
		flags.normal().read_only().execute_disable();

		// Allocate two 4 KiB pages for the table and map it.
		// This guarantees that we can access at least the "length" field of the table header when its physical address
		// crosses a page boundary.
		let mut allocated_length = 2 * BasePageSize::SIZE;
		let mut count = allocated_length / BasePageSize::SIZE;

		let physical_map_address = physical_address.align_down_to_base_page();
		let offset: usize = (physical_address - physical_map_address).into();
		let mut virtual_address = virtualmem::allocate(allocated_length).unwrap();
		paging::map::<BasePageSize>(virtual_address, physical_map_address, count, flags);

		// Get a pointer to the header and query the table length.
		let mut header_ptr: *const AcpiSdtHeader = (virtual_address + offset).as_ptr();
		let table_length = unsafe { (*header_ptr).length } as usize;

		// Remap if the length exceeds what we've allocated.
		if table_length > allocated_length - offset {
			virtualmem::deallocate(virtual_address, allocated_length);

			allocated_length = align_up!(table_length + offset, BasePageSize::SIZE);
			count = allocated_length / BasePageSize::SIZE;

			virtual_address = virtualmem::allocate(allocated_length).unwrap();
			paging::map::<BasePageSize>(virtual_address, physical_map_address, count, flags);

			header_ptr = (virtual_address + offset).as_ptr();
		}

		// Return the table.
		Self {
			header: unsafe { &*header_ptr },
			allocated_virtual_address: virtual_address,
			allocated_length,
		}
	}

	pub fn header_start_address(&self) -> usize {
		self.header as *const _ as usize
	}

	pub fn table_start_address(&self) -> usize {
		self.header_start_address() + mem::size_of::<AcpiSdtHeader>()
	}

	pub fn table_end_address(&self) -> usize {
		self.header_start_address() + self.header.length as usize
	}
}

impl<'a> Drop for AcpiTable<'a> {
	fn drop(&mut self) {
		virtualmem::deallocate(self.allocated_virtual_address, self.allocated_length);
	}
}

/// The ACPI Generic Address Structure (GAS).
/// Described in ACPI Specification 6.2 A, 5.2.3.2 Generic Address Structure.
#[repr(C, packed)]
struct AcpiGenericAddress {
	address_space: u8,
	bit_width: u8,
	bit_offset: u8,
	access_size: u8,
	address: u64,
}

const GENERIC_ADDRESS_IO_SPACE: u8 = 1;

/// The "Fixed ACPI Description Table" (FADT), also called "Fixed ACPI Control Pointer" (FACP).
/// Described in ACPI Specification 6.2 A, 5.2.9 Fixed ACPI Description Table (FADT).
#[repr(C, packed)]
struct AcpiFadt {
	firmware_ctrl: u32,
	dsdt: u32,
	reserved1: u8,
	preferred_pm_profile: u8,
	sci_int: u16,
	smi_cmd: u32,
	acpi_enable: u8,
	acpi_disable: u8,
	s4bios_req: u8,
	pstate_cnt: u8,
	pm1a_evt_blk: u32,
	pm1b_evt_blk: u32,
	pm1a_cnt_blk: u32,
	pm1b_cnt_blk: u32,
	pm2_cnt_blk: u32,
	pm_tmr_blk: u32,
	gpe0_blk: u32,
	gpe1_blk: u32,
	pm1_evt_len: u8,
	pm1_cnt_len: u8,
	pm2_cnt_len: u8,
	pm_tmr_len: u8,
	gpe0_blk_len: u8,
	gpe1_blk_len: u8,
	gpe1_base: u8,
	cst_cnt: u8,
	p_lvl2_lat: u16,
	p_lvl3_lat: u16,
	flush_size: u16,
	flush_stride: u16,
	duty_offset: u8,
	duty_width: u8,
	day_alrm: u8,
	mon_alrm: u8,
	century: u8,
	iapc_boot_arch: u16,
	reserved2: u8,
	flags: u32,
	reset_reg: AcpiGenericAddress,
	reset_value: u8,
	arm_boot_arch: u16,
	fadt_minor_version: u8,
	x_firmware_ctrl: u64,
	x_dsdt: u64,
	x_pm1a_evt_blk: AcpiGenericAddress,
	x_pm1b_evt_blk: AcpiGenericAddress,
	x_pm1a_cnt_blk: AcpiGenericAddress,
	x_pm1b_cnt_blk: AcpiGenericAddress,
	x_pm2_cnt_blk: AcpiGenericAddress,
	x_pm_tmr_blk: AcpiGenericAddress,
	x_gpe0_blk: AcpiGenericAddress,
	x_gpe1_blk: AcpiGenericAddress,
	sleep_control_reg: AcpiGenericAddress,
	sleep_status_reg: AcpiGenericAddress,
	hypervisor_vendor_id: u64,
}

/// Verifies the checksum of an ACPI table.
/// Tables supporting this feature contain a "checksum" field. The value of this field is chosen, so that a
/// (wrapping) sum over all table fields equals zero.
fn verify_checksum(start_address: usize, length: usize) -> Result<(), ()> {
	// Get a slice over all bytes of the structure that are considered for the checksum.
	let slice = unsafe { slice::from_raw_parts(start_address as *const u8, length) };

	// Perform a wrapping sum over these bytes.
	let checksum = slice.iter().fold(0, |acc: u8, x| acc.wrapping_add(*x));

	// This sum must equal to zero to be valid.
	if checksum == 0 {
		Ok(())
	} else {
		Err(())
	}
}

/// Tries to find the ACPI RSDP within the specified address range.
/// Returns a reference to it within the Ok() if successful or an empty Err() on failure.
fn detect_rsdp(start_address: PhysAddr, end_address: PhysAddr) -> Result<&'static AcpiRsdp, ()> {
	// Trigger page mapping in the first iteration!
	let mut current_page = 0;

	// Look for the ACPI RSDP in all possible 16-byte aligned addresses within this range.
	for current_address in (start_address.as_usize()..end_address.as_usize()).step_by(16) {
		// Have we crossed a page boundary in the last iteration?
		if current_address / BasePageSize::SIZE > current_page {
			// Identity-map this possible page of the RSDP.
			paging::identity_map(
				PhysAddr::from(current_address),
				PhysAddr::from(current_address),
			);
			current_page = current_address / BasePageSize::SIZE;
		}

		// Verify the signature to find out if this is really an ACPI RSDP.
		let rsdp = unsafe { &*(current_address as *const AcpiRsdp) };
		if rsdp.signature() != "RSD PTR " {
			continue;
		}

		// Verify the basic checksum.
		if verify_checksum(current_address, RSDP_CHECKSUM_LENGTH).is_err() {
			debug!(
				"Found an ACPI table at {:#X}, but its RSDP checksum is invalid",
				current_address
			);
			continue;
		}

		// Verify the extended checksum if this is an ACPI 2.0-compliant table.
		if rsdp.revision >= 2 && verify_checksum(current_address, RSDP_XCHECKSUM_LENGTH).is_err() {
			debug!(
				"Found an ACPI table at {:#X}, but its RSDP extended checksum is invalid",
				current_address
			);
			continue;
		}

		// We were successful! Return a pointer to the RSDT (whose 64-bit address is called XSDT in this structure).
		info!(
			"Found an ACPI revision {} table at {:#X} with OEM ID \"{}\"",
			rsdp.revision,
			current_address,
			rsdp.oem_id()
		);
		return Ok(rsdp);
	}

	// We found no valid ACPI RSDP.
	Err(())
}

/// Detects ACPI support of the computer system.
/// Returns a reference to the ACPI RSDP within the Ok() if successful or an empty Err() on failure.
fn detect_acpi() -> Result<&'static AcpiRsdp, ()> {
	// Get the address of the EBDA.
	paging::identity_map(EBDA_PTR_LOCATION, EBDA_PTR_LOCATION);
	let ebda_ptr_location: &u16 =
		unsafe { &*(VirtAddr::from(EBDA_PTR_LOCATION.as_u64()).as_ptr()) };
	let ebda_address = PhysAddr((*ebda_ptr_location as u64) << 4);

	// Check if the pointed address is valid. This check is also done in ACPICA.
	if ebda_address > EBDA_MINIMUM_ADDRESS {
		// Try to find an RSDP within the 1 KiB window of the EBDA.
		if let Ok(rsdp) = detect_rsdp(ebda_address, ebda_address + EBDA_WINDOW_SIZE) {
			return Ok(rsdp);
		}
	}

	// If we didn't find anything above, check the other memory range for an RSDP.
	if let Ok(rsdp) = detect_rsdp(RSDP_SEARCH_ADDRESS_LOW, RSDP_SEARCH_ADDRESS_HIGH) {
		return Ok(rsdp);
	}

	// We didn't find any ACPI tables.
	Err(())
}

fn search_s5_in_table(table: AcpiTable<'_>) {
	// Get the AML code.
	// As we do not implement an AML interpreter, we search through the bytecode.
	let aml = unsafe {
		slice::from_raw_parts(
			table.table_start_address() as *const u8,
			table.table_end_address() - table.table_start_address(),
		)
	};

	// Find the "_S5_" object in the bytecode.
	let s5 = [b'_', b'S', b'5', b'_', AML_PACKAGEOP];
	let s5_position = aml.windows(s5.len()).position(|window| window == s5);
	if let Some(i) = s5_position {
		// We have found an "_S5_" object that looks valid.
		// To be sure, verify that it begins with an AML_NAMEOP or an AML_NAMEOP and a backslash.
		if i > 2 && (aml[i - 1] == AML_NAMEOP || (aml[i - 2] == AML_NAMEOP && aml[i - 1] == b'\\'))
		{
			// This is a valid "_S5_" object.
			// It should be followed by this structure:
			//    - single byte for PkgLength (index 5)
			//    - single byte for NumElements (index 6)
			let pkg_length = aml[i + 5];
			let num_elements = aml[i + 6];

			// Bits 6-7 of PkgLength are non-zero for larger packages, resulting in a different structure.
			// This mustn't be the case for the "_S5_" object.
			if pkg_length & 0b1100_0000 == 0 && num_elements > 0 {
				// The next byte is an opcode describing the data.
				// It is usually the byte prefix, indicating that the actual data is the single byte following the opcode.
				// However, if the data is a zero or one byte, this may also be indicated by the opcode.
				let op = aml[i + 7];
				let slp_typa;

				match op {
					AML_ZEROOP => slp_typa = 0,
					AML_ONEOP => slp_typa = 1,
					AML_BYTEPREFIX => slp_typa = aml[i + 8],
					_ => return,
				}

				// All assumptions are correct, so slp_typa is supposed to contain valid information.
				// Now we have all information we need for powering off through ACPI.
				//
				// Note that Power Off may also be controlled through PM1B_CNT_BLK / SLP_TYPB
				// according to the ACPI Specification. However, this has not yet been observed on real computers
				// and therefore not implemented.
				unsafe {
					SLP_TYPA = Some(slp_typa);
				}
			}
		}
	}
}

fn parse_fadt(fadt: AcpiTable<'_>) {
	// Get us a reference to the actual fields of the FADT table.
	// Note that not all fields may be accessible depending on the ACPI revision of the computer.
	// Always check fadt.table_end_address() when accessing an optional field!
	let fadt_table = unsafe { &*(fadt.table_start_address() as *const AcpiFadt) };

	// Check if the FADT is large enough to hold an x_pm1a_cnt_blk field and if this field is non-zero.
	// In that case, it shall be preferred over the I/O port specified in pm1a_cnt_blk.
	// As all PM1 control registers are supposed to be in I/O space, we can simply check the address_space field
	// of x_pm1a_cnt_blk to determine the validity of x_pm1a_cnt_blk.
	let x_pm1a_cnt_blk_field_address = &fadt_table.x_pm1a_cnt_blk as *const _ as usize;
	let pm1a_cnt_blk = if x_pm1a_cnt_blk_field_address < fadt.table_end_address()
		&& fadt_table.x_pm1a_cnt_blk.address_space == GENERIC_ADDRESS_IO_SPACE
	{
		fadt_table.x_pm1a_cnt_blk.address as u16
	} else {
		fadt_table.pm1a_cnt_blk as u16
	};
	unsafe {
		PM1A_CNT_BLK = Some(pm1a_cnt_blk);
	}

	// Map the "Differentiated System Description Table" (DSDT).
	// TODO: This must not require "unsafe", see https://github.com/rust-lang/rust/issues/46043#issuecomment-393072398
	let x_dsdt = core::ptr::addr_of!(fadt_table.x_dsdt);
	let x_dsdt_field_address = unsafe { x_dsdt.read_unaligned() as usize };
	let dsdt_address = if x_dsdt_field_address < fadt.table_end_address() && fadt_table.x_dsdt > 0 {
		PhysAddr(fadt_table.x_dsdt)
	} else {
		PhysAddr(fadt_table.dsdt.into())
	};
	let dsdt = AcpiTable::map(dsdt_address);

	// Check it.
	assert!(
		dsdt.header.signature() == "DSDT",
		"DSDT at {:#X} has invalid signature \"{}\"",
		dsdt_address,
		dsdt.header.signature()
	);
	assert!(
		verify_checksum(dsdt.header_start_address(), dsdt.header.length as usize).is_ok(),
		"DSDT at {:#X} has invalid checksum",
		dsdt_address
	);

	// Try to find the "_S5_" object for SLP_TYPA in the DSDT AML bytecode.
	// It may also be in an SSDT though.
	search_s5_in_table(dsdt);
}

fn parse_ssdt(ssdt: AcpiTable<'_>) {
	// We don't need to parse the SSDT if we already have information about the "_S5_" object
	// (e.g. from the DSDT or a previous SSDT).
	if unsafe { SLP_TYPA }.is_some() {
		return;
	}

	// Otherwise, just try to find "_S5_" information in the AML bytecode of this SSDT.
	search_s5_in_table(ssdt);
}

pub fn get_madt() -> Option<&'static AcpiTable<'static>> {
	unsafe { MADT.as_ref() }
}

pub fn poweroff() {
	unsafe {
		if let (Some(pm1a_cnt_blk), Some(slp_typa)) = (PM1A_CNT_BLK, SLP_TYPA) {
			let bits = (u16::from(slp_typa) << 10) | SLP_EN;
			debug!(
				"Powering Off through ACPI (port {:#X}, bitmask {:#X})",
				pm1a_cnt_blk, bits
			);
			outw(pm1a_cnt_blk, bits);
		} else {
			debug!("ACPI Power Off is not available");
		}
	}
}

pub fn init() {
	// Detect the RSDP and get a pointer to either the XSDT (64-bit) or RSDT (32-bit), whichever is available.
	// Both are called RSDT in the following.
	let rsdp = detect_acpi().expect("HermitCore requires an ACPI-compliant system");
	let rsdt_physical_address = if rsdp.revision >= 2 {
		PhysAddr(rsdp.xsdt_physical_address)
	} else {
		PhysAddr(rsdp.rsdt_physical_address.into())
	};

	// Map the RSDT.
	let rsdt = AcpiTable::map(rsdt_physical_address);

	// The RSDT contains pointers to all available ACPI tables.
	// Iterate through them.
	let mut current_address = rsdt.table_start_address();
	while current_address < rsdt.table_end_address() {
		// Depending on the RSDP revision, either an XSDT or an RSDT has been chosen above.
		// The XSDT contains 64-bit pointers whereas the RSDT has 32-bit pointers.
		let table_physical_address = if rsdp.revision >= 2 {
			let address = PhysAddr(unsafe { *(current_address as *const u64) });
			current_address += mem::size_of::<u64>();
			address
		} else {
			let address = PhysAddr((unsafe { *(current_address as *const u32) }).into());
			current_address += mem::size_of::<u32>();
			address
		};

		let table = AcpiTable::map(table_physical_address);
		debug!("Found ACPI table: {}", table.header.signature());

		if table.header.signature() == "APIC" {
			// The "Multiple APIC Description Table" (MADT) aka "APIC Table" (APIC)
			// Check and save the entire APIC table for the get_apic_table() call.
			assert!(
				verify_checksum(table.header_start_address(), table.header.length as usize).is_ok(),
				"MADT at {:#X} has invalid checksum",
				table_physical_address
			);
			unsafe {
				MADT = Some(table);
			}
		} else if table.header.signature() == "FACP" {
			// The "Fixed ACPI Description Table" (FADT) aka "Fixed ACPI Control Pointer" (FACP)
			// Check and parse this table for the poweroff() call.
			assert!(
				verify_checksum(table.header_start_address(), table.header.length as usize).is_ok(),
				"FADT at {:#X} has invalid checksum",
				table_physical_address
			);
			parse_fadt(table);
		} else if table.header.signature() == "SSDT" {
			assert!(
				verify_checksum(table.header_start_address(), table.header.length as usize).is_ok(),
				"SSDT at {:#X} has invalid checksum",
				table_physical_address
			);
			parse_ssdt(table);
		}
	}
}