1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (c) 2017 Colin Finck, RWTH Aachen University
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use core::convert::TryInto;

use crate::arch::x86_64::mm::paging::{BasePageSize, PageSize};
use crate::arch::x86_64::mm::VirtAddr;
use crate::mm;
use crate::mm::freelist::{FreeList, FreeListEntry};
use crate::synch::spinlock::*;

static KERNEL_FREE_LIST: SpinlockIrqSave<FreeList> = SpinlockIrqSave::new(FreeList::new());

pub fn init() {
	let entry = FreeListEntry::new(
		mm::kernel_end_address().as_usize(),
		kernel_heap_end().as_usize(),
	);
	KERNEL_FREE_LIST.lock().list.push_back(entry);
}

pub fn allocate(size: usize) -> Result<VirtAddr, ()> {
	assert!(size > 0);
	assert_eq!(
		size % BasePageSize::SIZE,
		0,
		"Size {:#X} is not a multiple of {:#X}",
		size,
		BasePageSize::SIZE
	);

	Ok(VirtAddr(
		KERNEL_FREE_LIST
			.lock()
			.allocate(size, None)?
			.try_into()
			.unwrap(),
	))
}

pub fn allocate_aligned(size: usize, alignment: usize) -> Result<VirtAddr, ()> {
	assert!(size > 0);
	assert!(alignment > 0);
	assert_eq!(
		size % alignment,
		0,
		"Size {:#X} is not a multiple of the given alignment {:#X}",
		size,
		alignment
	);
	assert_eq!(
		alignment % BasePageSize::SIZE,
		0,
		"Alignment {:#X} is not a multiple of {:#X}",
		alignment,
		BasePageSize::SIZE
	);

	Ok(VirtAddr(
		KERNEL_FREE_LIST
			.lock()
			.allocate(size, Some(alignment))?
			.try_into()
			.unwrap(),
	))
}

pub fn deallocate(virtual_address: VirtAddr, size: usize) {
	assert!(
		virtual_address >= VirtAddr(mm::kernel_end_address().as_u64()),
		"Virtual address {:#X} is not >= KERNEL_END_ADDRESS",
		virtual_address
	);
	assert!(
		virtual_address < kernel_heap_end(),
		"Virtual address {:#X} is not < kernel_heap_end()",
		virtual_address
	);
	assert_eq!(
		virtual_address % BasePageSize::SIZE,
		0,
		"Virtual address {:#X} is not a multiple of {:#X}",
		virtual_address,
		BasePageSize::SIZE
	);
	assert!(size > 0);
	assert_eq!(
		size % BasePageSize::SIZE,
		0,
		"Size {:#X} is not a multiple of {:#X}",
		size,
		BasePageSize::SIZE
	);

	KERNEL_FREE_LIST
		.lock()
		.deallocate(virtual_address.as_usize(), size);
}

/*pub fn reserve(virtual_address: VirtAddr, size: usize) {
	assert!(
		virtual_address >= VirtAddr(mm::kernel_end_address().as_u64()),
		"Virtual address {:#X} is not >= KERNEL_END_ADDRESS",
		virtual_address
	);
	assert!(
		virtual_address < kernel_heap_end(),
		"Virtual address {:#X} is not < kernel_heap_end()",
		virtual_address
	);
	assert_eq!(
		virtual_address % BasePageSize::SIZE,
		0,
		"Virtual address {:#X} is not a multiple of {:#X}",
		virtual_address,
		BasePageSize::SIZE
	);
	assert!(size > 0);
	assert_eq!(
		size % BasePageSize::SIZE,
		0,
		"Size {:#X} is not a multiple of {:#X}",
		size,
		BasePageSize::SIZE
	);

	let result = KERNEL_FREE_LIST
		.lock()
		.reserve(virtual_address.as_usize(), size);
	assert!(
		result.is_ok(),
		"Could not reserve {:#X} bytes of virtual memory at {:#X}",
		size,
		virtual_address
	);
}*/

pub fn print_information() {
	KERNEL_FREE_LIST
		.lock()
		.print_information(" KERNEL VIRTUAL MEMORY FREE LIST ");
}

/// End of the virtual memory address space reserved for kernel memory.
/// This also marks the start of the virtual memory address space reserved for the task heap.
/// In case of pure rust applications, we don't have a task heap.
#[cfg(not(feature = "newlib"))]
#[inline]
pub const fn kernel_heap_end() -> VirtAddr {
	VirtAddr(0x8000_0000_0000u64)
}

#[cfg(feature = "newlib")]
#[inline]
pub const fn kernel_heap_end() -> VirtAddr {
	VirtAddr(0x1_0000_0000u64)
}