Struct scale_info::prelude::collections::VecDeque 1.0.0[−][src]
Expand description
A double-ended queue implemented with a growable ring buffer.
The “default” usage of this type as a queue is to use push_back
to add to
the queue, and pop_front
to remove from the queue. extend
and append
push onto the back in this manner, and iterating over VecDeque
goes front
to back.
A VecDeque
with a known list of items can be initialized from an array:
use std::collections::VecDeque;
let deq = VecDeque::from([-1, 0, 1]);
Since VecDeque
is a ring buffer, its elements are not necessarily contiguous
in memory. If you want to access the elements as a single slice, such as for
efficient sorting, you can use make_contiguous
. It rotates the VecDeque
so that its elements do not wrap, and returns a mutable slice to the
now-contiguous element sequence.
Implementations
Creates an empty VecDeque
.
Examples
use std::collections::VecDeque;
let vector: VecDeque<u32> = VecDeque::new();
🔬 This is a nightly-only experimental API. (allocator_api
)
allocator_api
)Creates an empty VecDeque
.
Examples
use std::collections::VecDeque;
let vector: VecDeque<u32> = VecDeque::new();
🔬 This is a nightly-only experimental API. (allocator_api
)
allocator_api
)Creates an empty VecDeque
with space for at least capacity
elements.
Examples
use std::collections::VecDeque;
let vector: VecDeque<u32> = VecDeque::with_capacity(10);
Provides a reference to the element at the given index.
Element at index 0 is the front of the queue.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(3);
buf.push_back(4);
buf.push_back(5);
assert_eq!(buf.get(1), Some(&4));
Provides a mutable reference to the element at the given index.
Element at index 0 is the front of the queue.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(3);
buf.push_back(4);
buf.push_back(5);
if let Some(elem) = buf.get_mut(1) {
*elem = 7;
}
assert_eq!(buf[1], 7);
Swaps elements at indices i
and j
.
i
and j
may be equal.
Element at index 0 is the front of the queue.
Panics
Panics if either index is out of bounds.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(3);
buf.push_back(4);
buf.push_back(5);
assert_eq!(buf, [3, 4, 5]);
buf.swap(0, 2);
assert_eq!(buf, [5, 4, 3]);
Returns the number of elements the VecDeque
can hold without
reallocating.
Examples
use std::collections::VecDeque;
let buf: VecDeque<i32> = VecDeque::with_capacity(10);
assert!(buf.capacity() >= 10);
Reserves the minimum capacity for exactly additional
more elements to be inserted in the
given VecDeque
. Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it requests. Therefore
capacity can not be relied upon to be precisely minimal. Prefer reserve
if future
insertions are expected.
Panics
Panics if the new capacity overflows usize
.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
buf.reserve_exact(10);
assert!(buf.capacity() >= 11);
Reserves capacity for at least additional
more elements to be inserted in the given
VecDeque
. The collection may reserve more space to avoid frequent reallocations.
Panics
Panics if the new capacity overflows usize
.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<i32> = vec![1].into_iter().collect();
buf.reserve(10);
assert!(buf.capacity() >= 11);
🔬 This is a nightly-only experimental API. (try_reserve
)
new API
🔬 This is a nightly-only experimental API. (try_reserve
)
new API
Tries to reserve the minimum capacity for exactly additional
more elements to
be inserted in the given VecDeque<T>
. After calling try_reserve_exact
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer reserve
if future insertions are expected.
Errors
If the capacity overflows usize
, or the allocator reports a failure, then an error
is returned.
Examples
#![feature(try_reserve)]
use std::collections::TryReserveError;
use std::collections::VecDeque;
fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
let mut output = VecDeque::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve_exact(data.len())?;
// Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work
output.extend(data.iter().map(|&val| {
val * 2 + 5 // very complicated
}));
Ok(output)
}
🔬 This is a nightly-only experimental API. (try_reserve
)
new API
🔬 This is a nightly-only experimental API. (try_reserve
)
new API
Tries to reserve capacity for at least additional
more elements to be inserted
in the given VecDeque<T>
. The collection may reserve more space to avoid
frequent reallocations. After calling try_reserve
, capacity will be
greater than or equal to self.len() + additional
. Does nothing if
capacity is already sufficient.
Errors
If the capacity overflows usize
, or the allocator reports a failure, then an error
is returned.
Examples
#![feature(try_reserve)]
use std::collections::TryReserveError;
use std::collections::VecDeque;
fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
let mut output = VecDeque::new();
// Pre-reserve the memory, exiting if we can't
output.try_reserve(data.len())?;
// Now we know this can't OOM in the middle of our complex work
output.extend(data.iter().map(|&val| {
val * 2 + 5 // very complicated
}));
Ok(output)
}
Shrinks the capacity of the VecDeque
as much as possible.
It will drop down as close as possible to the length but the allocator may still inform the
VecDeque
that there is space for a few more elements.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::with_capacity(15);
buf.extend(0..4);
assert_eq!(buf.capacity(), 15);
buf.shrink_to_fit();
assert!(buf.capacity() >= 4);
Shrinks the capacity of the VecDeque
with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::with_capacity(15);
buf.extend(0..4);
assert_eq!(buf.capacity(), 15);
buf.shrink_to(6);
assert!(buf.capacity() >= 6);
buf.shrink_to(0);
assert!(buf.capacity() >= 4);
Shortens the VecDeque
, keeping the first len
elements and dropping
the rest.
If len
is greater than the VecDeque
’s current length, this has no
effect.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(5);
buf.push_back(10);
buf.push_back(15);
assert_eq!(buf, [5, 10, 15]);
buf.truncate(1);
assert_eq!(buf, [5]);
🔬 This is a nightly-only experimental API. (allocator_api
)
allocator_api
)Returns a reference to the underlying allocator.
Returns a front-to-back iterator.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(5);
buf.push_back(3);
buf.push_back(4);
let b: &[_] = &[&5, &3, &4];
let c: Vec<&i32> = buf.iter().collect();
assert_eq!(&c[..], b);
Returns a front-to-back iterator that returns mutable references.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(5);
buf.push_back(3);
buf.push_back(4);
for num in buf.iter_mut() {
*num = *num - 2;
}
let b: &[_] = &[&mut 3, &mut 1, &mut 2];
assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
Returns a pair of slices which contain, in order, the contents of the
VecDeque
.
If make_contiguous
was previously called, all elements of the
VecDeque
will be in the first slice and the second slice will be empty.
Examples
use std::collections::VecDeque;
let mut vector = VecDeque::new();
vector.push_back(0);
vector.push_back(1);
vector.push_back(2);
assert_eq!(vector.as_slices(), (&[0, 1, 2][..], &[][..]));
vector.push_front(10);
vector.push_front(9);
assert_eq!(vector.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
Returns a pair of slices which contain, in order, the contents of the
VecDeque
.
If make_contiguous
was previously called, all elements of the
VecDeque
will be in the first slice and the second slice will be empty.
Examples
use std::collections::VecDeque;
let mut vector = VecDeque::new();
vector.push_back(0);
vector.push_back(1);
vector.push_front(10);
vector.push_front(9);
vector.as_mut_slices().0[0] = 42;
vector.as_mut_slices().1[0] = 24;
assert_eq!(vector.as_slices(), (&[42, 10][..], &[24, 1][..]));
Returns the number of elements in the VecDeque
.
Examples
use std::collections::VecDeque;
let mut v = VecDeque::new();
assert_eq!(v.len(), 0);
v.push_back(1);
assert_eq!(v.len(), 1);
Returns true
if the VecDeque
is empty.
Examples
use std::collections::VecDeque;
let mut v = VecDeque::new();
assert!(v.is_empty());
v.push_front(1);
assert!(!v.is_empty());
Creates an iterator that covers the specified range in the VecDeque
.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Examples
use std::collections::VecDeque;
let v: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
let range = v.range(2..).copied().collect::<VecDeque<_>>();
assert_eq!(range, [3]);
// A full range covers all contents
let all = v.range(..);
assert_eq!(all.len(), 3);
Creates an iterator that covers the specified mutable range in the VecDeque
.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Examples
use std::collections::VecDeque;
let mut v: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
for v in v.range_mut(2..) {
*v *= 2;
}
assert_eq!(v, vec![1, 2, 6]);
// A full range covers all contents
for v in v.range_mut(..) {
*v *= 2;
}
assert_eq!(v, vec![2, 4, 12]);
Creates a draining iterator that removes the specified range in the
VecDeque
and yields the removed items.
Note 1: The element range is removed even if the iterator is not consumed until the end.
Note 2: It is unspecified how many elements are removed from the deque,
if the Drain
value is not dropped, but the borrow it holds expires
(e.g., due to mem::forget
).
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Examples
use std::collections::VecDeque;
let mut v: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
let drained = v.drain(2..).collect::<VecDeque<_>>();
assert_eq!(drained, [3]);
assert_eq!(v, [1, 2]);
// A full range clears all contents
v.drain(..);
assert!(v.is_empty());
Clears the VecDeque
, removing all values.
Examples
use std::collections::VecDeque;
let mut v = VecDeque::new();
v.push_back(1);
v.clear();
assert!(v.is_empty());
Returns true
if the VecDeque
contains an element equal to the
given value.
Examples
use std::collections::VecDeque;
let mut vector: VecDeque<u32> = VecDeque::new();
vector.push_back(0);
vector.push_back(1);
assert_eq!(vector.contains(&1), true);
assert_eq!(vector.contains(&10), false);
Provides a reference to the front element, or None
if the VecDeque
is
empty.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
assert_eq!(d.front(), None);
d.push_back(1);
d.push_back(2);
assert_eq!(d.front(), Some(&1));
Provides a mutable reference to the front element, or None
if the
VecDeque
is empty.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
assert_eq!(d.front_mut(), None);
d.push_back(1);
d.push_back(2);
match d.front_mut() {
Some(x) => *x = 9,
None => (),
}
assert_eq!(d.front(), Some(&9));
Provides a reference to the back element, or None
if the VecDeque
is
empty.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
assert_eq!(d.back(), None);
d.push_back(1);
d.push_back(2);
assert_eq!(d.back(), Some(&2));
Provides a mutable reference to the back element, or None
if the
VecDeque
is empty.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
assert_eq!(d.back(), None);
d.push_back(1);
d.push_back(2);
match d.back_mut() {
Some(x) => *x = 9,
None => (),
}
assert_eq!(d.back(), Some(&9));
Removes the first element and returns it, or None
if the VecDeque
is
empty.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
d.push_back(1);
d.push_back(2);
assert_eq!(d.pop_front(), Some(1));
assert_eq!(d.pop_front(), Some(2));
assert_eq!(d.pop_front(), None);
Removes the last element from the VecDeque
and returns it, or None
if
it is empty.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
assert_eq!(buf.pop_back(), None);
buf.push_back(1);
buf.push_back(3);
assert_eq!(buf.pop_back(), Some(3));
Prepends an element to the VecDeque
.
Examples
use std::collections::VecDeque;
let mut d = VecDeque::new();
d.push_front(1);
d.push_front(2);
assert_eq!(d.front(), Some(&2));
Appends an element to the back of the VecDeque
.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(1);
buf.push_back(3);
assert_eq!(3, *buf.back().unwrap());
Removes an element from anywhere in the VecDeque
and returns it,
replacing it with the first element.
This does not preserve ordering, but is O(1).
Returns None
if index
is out of bounds.
Element at index 0 is the front of the queue.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
assert_eq!(buf.swap_remove_front(0), None);
buf.push_back(1);
buf.push_back(2);
buf.push_back(3);
assert_eq!(buf, [1, 2, 3]);
assert_eq!(buf.swap_remove_front(2), Some(3));
assert_eq!(buf, [2, 1]);
Removes an element from anywhere in the VecDeque
and returns it, replacing it with the
last element.
This does not preserve ordering, but is O(1).
Returns None
if index
is out of bounds.
Element at index 0 is the front of the queue.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
assert_eq!(buf.swap_remove_back(0), None);
buf.push_back(1);
buf.push_back(2);
buf.push_back(3);
assert_eq!(buf, [1, 2, 3]);
assert_eq!(buf.swap_remove_back(0), Some(1));
assert_eq!(buf, [3, 2]);
Inserts an element at index
within the VecDeque
, shifting all elements with indices
greater than or equal to index
towards the back.
Element at index 0 is the front of the queue.
Panics
Panics if index
is greater than VecDeque
’s length
Examples
use std::collections::VecDeque;
let mut vec_deque = VecDeque::new();
vec_deque.push_back('a');
vec_deque.push_back('b');
vec_deque.push_back('c');
assert_eq!(vec_deque, &['a', 'b', 'c']);
vec_deque.insert(1, 'd');
assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
Removes and returns the element at index
from the VecDeque
.
Whichever end is closer to the removal point will be moved to make
room, and all the affected elements will be moved to new positions.
Returns None
if index
is out of bounds.
Element at index 0 is the front of the queue.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(1);
buf.push_back(2);
buf.push_back(3);
assert_eq!(buf, [1, 2, 3]);
assert_eq!(buf.remove(1), Some(2));
assert_eq!(buf, [1, 3]);
Splits the VecDeque
into two at the given index.
Returns a newly allocated VecDeque
. self
contains elements [0, at)
,
and the returned VecDeque
contains elements [at, len)
.
Note that the capacity of self
does not change.
Element at index 0 is the front of the queue.
Panics
Panics if at > len
.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<_> = vec![1, 2, 3].into_iter().collect();
let buf2 = buf.split_off(1);
assert_eq!(buf, [1]);
assert_eq!(buf2, [2, 3]);
Moves all the elements of other
into self
, leaving other
empty.
Panics
Panics if the new number of elements in self overflows a usize
.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<_> = vec![1, 2].into_iter().collect();
let mut buf2: VecDeque<_> = vec![3, 4].into_iter().collect();
buf.append(&mut buf2);
assert_eq!(buf, [1, 2, 3, 4]);
assert_eq!(buf2, []);
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false.
This method operates in place, visiting each element exactly once in the
original order, and preserves the order of the retained elements.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.extend(1..5);
buf.retain(|&x| x % 2 == 0);
assert_eq!(buf, [2, 4]);
Because the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.extend(1..6);
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
buf.retain(|_| *iter.next().unwrap());
assert_eq!(buf, [2, 3, 5]);
Modifies the VecDeque
in-place so that len()
is equal to new_len
,
either by removing excess elements from the back or by appending
elements generated by calling generator
to the back.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(5);
buf.push_back(10);
buf.push_back(15);
assert_eq!(buf, [5, 10, 15]);
buf.resize_with(5, Default::default);
assert_eq!(buf, [5, 10, 15, 0, 0]);
buf.resize_with(2, || unreachable!());
assert_eq!(buf, [5, 10]);
let mut state = 100;
buf.resize_with(5, || { state += 1; state });
assert_eq!(buf, [5, 10, 101, 102, 103]);
Rearranges the internal storage of this deque so it is one contiguous slice, which is then returned.
This method does not allocate and does not change the order of the inserted elements. As it returns a mutable slice, this can be used to sort a deque.
Once the internal storage is contiguous, the as_slices
and
as_mut_slices
methods will return the entire contents of the
VecDeque
in a single slice.
Examples
Sorting the content of a deque.
use std::collections::VecDeque;
let mut buf = VecDeque::with_capacity(15);
buf.push_back(2);
buf.push_back(1);
buf.push_front(3);
// sorting the deque
buf.make_contiguous().sort();
assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_]));
// sorting it in reverse order
buf.make_contiguous().sort_by(|a, b| b.cmp(a));
assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_]));
Getting immutable access to the contiguous slice.
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(2);
buf.push_back(1);
buf.push_front(3);
buf.make_contiguous();
if let (slice, &[]) = buf.as_slices() {
// we can now be sure that `slice` contains all elements of the deque,
// while still having immutable access to `buf`.
assert_eq!(buf.len(), slice.len());
assert_eq!(slice, &[3, 2, 1] as &[_]);
}
Rotates the double-ended queue mid
places to the left.
Equivalently,
- Rotates item
mid
into the first position. - Pops the first
mid
items and pushes them to the end. - Rotates
len() - mid
places to the right.
Panics
If mid
is greater than len()
. Note that mid == len()
does not panic and is a no-op rotation.
Complexity
Takes *O*(min(mid, len() - mid))
time and no extra space.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<_> = (0..10).collect();
buf.rotate_left(3);
assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
for i in 1..10 {
assert_eq!(i * 3 % 10, buf[0]);
buf.rotate_left(3);
}
assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
Rotates the double-ended queue k
places to the right.
Equivalently,
- Rotates the first item into position
k
. - Pops the last
k
items and pushes them to the front. - Rotates
len() - k
places to the left.
Panics
If k
is greater than len()
. Note that k == len()
does not panic and is a no-op rotation.
Complexity
Takes *O*(min(k, len() - k))
time and no extra space.
Examples
use std::collections::VecDeque;
let mut buf: VecDeque<_> = (0..10).collect();
buf.rotate_right(3);
assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
for i in 1..10 {
assert_eq!(0, buf[i * 3 % 10]);
buf.rotate_right(3);
}
assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
Binary searches this sorted VecDeque
for a given element.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search_by
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
use std::collections::VecDeque;
let deque: VecDeque<_> = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
assert_eq!(deque.binary_search(&13), Ok(9));
assert_eq!(deque.binary_search(&4), Err(7));
assert_eq!(deque.binary_search(&100), Err(13));
let r = deque.binary_search(&1);
assert!(matches!(r, Ok(1..=4)));
If you want to insert an item to a sorted VecDeque
, while maintaining
sort order:
use std::collections::VecDeque;
let mut deque: VecDeque<_> = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
let num = 42;
let idx = deque.binary_search(&num).unwrap_or_else(|x| x);
deque.insert(idx, num);
assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
Binary searches this sorted VecDeque
with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying VecDeque
, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
than the desired target.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
use std::collections::VecDeque;
let deque: VecDeque<_> = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
assert_eq!(deque.binary_search_by(|x| x.cmp(&13)), Ok(9));
assert_eq!(deque.binary_search_by(|x| x.cmp(&4)), Err(7));
assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13));
let r = deque.binary_search_by(|x| x.cmp(&1));
assert!(matches!(r, Ok(1..=4)));
Binary searches this sorted VecDeque
with a key extraction function.
Assumes that the VecDeque
is sorted by the key, for instance with
make_contiguous().sort_by_key()
using the same key extraction function.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. If the value is not found then
Result::Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
See also binary_search
, binary_search_by
, and partition_point
.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
use std::collections::VecDeque;
let deque: VecDeque<_> = vec![(0, 0), (2, 1), (4, 1), (5, 1),
(3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)].into();
assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b), Err(7));
assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = deque.binary_search_by_key(&1, |&(a, b)| b);
assert!(matches!(r, Ok(1..=4)));
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The deque is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the deque and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).
If this deque is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search
, binary_search_by
, and binary_search_by_key
.
Examples
use std::collections::VecDeque;
let deque: VecDeque<_> = vec![1, 2, 3, 3, 5, 6, 7].into();
let i = deque.partition_point(|&x| x < 5);
assert_eq!(i, 4);
assert!(deque.iter().take(i).all(|&x| x < 5));
assert!(deque.iter().skip(i).all(|&x| !(x < 5)));
Modifies the VecDeque
in-place so that len()
is equal to new_len,
either by removing excess elements from the back or by appending clones of value
to the back.
Examples
use std::collections::VecDeque;
let mut buf = VecDeque::new();
buf.push_back(5);
buf.push_back(10);
buf.push_back(15);
assert_eq!(buf, [5, 10, 15]);
buf.resize(2, 0);
assert_eq!(buf, [5, 10]);
buf.resize(5, 20);
assert_eq!(buf, [5, 10, 20, 20, 20]);
Trait Implementations
pub fn deserialize<D>(
deserializer: D
) -> Result<VecDeque<T, Global>, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
pub fn deserialize<D>(
deserializer: D
) -> Result<VecDeque<T, Global>, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
pub fn deserialize_in_place<D>(
deserializer: D,
place: &mut VecDeque<T, Global>
) -> Result<(), <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
type Item = T
type Item = T
The item that will be appended.
pub fn append_or_new<EncodeLikeItem, I>(
self_encoded: Vec<u8, Global>,
iter: I
) -> Result<Vec<u8, Global>, Error> where
I: IntoIterator<Item = EncodeLikeItem>,
EncodeLikeItem: EncodeLike<<VecDeque<T, Global> as EncodeAppend>::Item>,
<I as IntoIterator>::IntoIter: ExactSizeIterator,
pub fn append_or_new<EncodeLikeItem, I>(
self_encoded: Vec<u8, Global>,
iter: I
) -> Result<Vec<u8, Global>, Error> where
I: IntoIterator<Item = EncodeLikeItem>,
EncodeLikeItem: EncodeLike<<VecDeque<T, Global> as EncodeAppend>::Item>,
<I as IntoIterator>::IntoIter: ExactSizeIterator,
Append all items in iter
to the given self_encoded
representation
or if self_encoded
value is empty, iter
is encoded to the Self
representation. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
Turn a VecDeque<T>
into a Vec<T>
.
This never needs to re-allocate, but does need to do O(n) data movement if the circular buffer doesn’t happen to be at the beginning of the allocation.
Examples
use std::collections::VecDeque;
// This one is *O*(1).
let deque: VecDeque<_> = (1..5).collect();
let ptr = deque.as_slices().0.as_ptr();
let vec = Vec::from(deque);
assert_eq!(vec, [1, 2, 3, 4]);
assert_eq!(vec.as_ptr(), ptr);
// This one needs data rearranging.
let mut deque: VecDeque<_> = (1..5).collect();
deque.push_front(9);
deque.push_front(8);
let ptr = deque.as_slices().1.as_ptr();
let vec = Vec::from(deque);
assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
assert_eq!(vec.as_ptr(), ptr);
Consumes the VecDeque
into a front-to-back iterator yielding elements by
value.
type Item = T
type Item = T
The type of the elements being iterated over.
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
pub fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
pub fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
Serialize this value into the given Serde serializer. Read more
impl<T, U> EncodeLike<Vec<U, Global>> for VecDeque<T, Global> where
T: EncodeLike<U>,
U: Encode,
impl<T, U> EncodeLike<VecDeque<U, Global>> for Vec<T, Global> where
T: EncodeLike<U>,
U: Encode,
Auto Trait Implementations
impl<T, A> RefUnwindSafe for VecDeque<T, A> where
A: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, A> UnwindSafe for VecDeque<T, A> where
A: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more
fn fmt_binary(self) -> FmtBinary<Self> where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self> where
Self: Binary,
Causes self
to use its Binary
implementation when Debug
-formatted.
fn fmt_display(self) -> FmtDisplay<Self> where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self> where
Self: Display,
Causes self
to use its Display
implementation when
Debug
-formatted. Read more
fn fmt_lower_exp(self) -> FmtLowerExp<Self> where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self> where
Self: LowerExp,
Causes self
to use its LowerExp
implementation when
Debug
-formatted. Read more
fn fmt_lower_hex(self) -> FmtLowerHex<Self> where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self> where
Self: LowerHex,
Causes self
to use its LowerHex
implementation when
Debug
-formatted. Read more
Causes self
to use its Octal
implementation when Debug
-formatted.
fn fmt_pointer(self) -> FmtPointer<Self> where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self> where
Self: Pointer,
Causes self
to use its Pointer
implementation when
Debug
-formatted. Read more
fn fmt_upper_exp(self) -> FmtUpperExp<Self> where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self> where
Self: UpperExp,
Causes self
to use its UpperExp
implementation when
Debug
-formatted. Read more
fn fmt_upper_hex(self) -> FmtUpperHex<Self> where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self> where
Self: UpperHex,
Causes self
to use its UpperHex
implementation when
Debug
-formatted. Read more
impl<T> Pipe for T where
T: ?Sized,
impl<T> Pipe for T where
T: ?Sized,
Pipes by value. This is generally the method you want to use. Read more
Borrows self
and passes that borrow into the pipe function. Read more
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R where
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R where
R: 'a,
Mutably borrows self
and passes that borrow into the pipe function. Read more
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R where
Self: Borrow<B>,
B: 'a + ?Sized,
R: 'a,
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R where
Self: Borrow<B>,
B: 'a + ?Sized,
R: 'a,
Borrows self
, then passes self.borrow()
into the pipe function. Read more
fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R
) -> R where
Self: BorrowMut<B>,
B: 'a + ?Sized,
R: 'a,
fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R
) -> R where
Self: BorrowMut<B>,
B: 'a + ?Sized,
R: 'a,
Mutably borrows self
, then passes self.borrow_mut()
into the pipe
function. Read more
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R where
Self: AsRef<U>,
R: 'a,
U: 'a + ?Sized,
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R where
Self: AsRef<U>,
R: 'a,
U: 'a + ?Sized,
Borrows self
, then passes self.as_ref()
into the pipe function.
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R where
Self: AsMut<U>,
R: 'a,
U: 'a + ?Sized,
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R where
Self: AsMut<U>,
R: 'a,
U: 'a + ?Sized,
Mutably borrows self
, then passes self.as_mut()
into the pipe
function. Read more
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Deref<Target = T>,
T: 'a + ?Sized,
R: 'a,
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Deref<Target = T>,
T: 'a + ?Sized,
R: 'a,
Borrows self
, then passes self.deref()
into the pipe function.
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
fn pipe_as_ref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: AsRef<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_as_mut<'a, T, R>(&'a mut self, func: impl FnOnce(&'a mut T) -> R) -> R where
Self: AsMut<T>,
T: 'a,
R: 'a,
fn pipe_as_mut<'a, T, R>(&'a mut self, func: impl FnOnce(&'a mut T) -> R) -> R where
Self: AsMut<T>,
T: 'a,
R: 'a,
Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
fn pipe_borrow<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R where
Self: Borrow<T>,
T: 'a,
R: 'a,
Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_borrow_mut<'a, T, R>(
&'a mut self,
func: impl FnOnce(&'a mut T) -> R
) -> R where
Self: BorrowMut<T>,
T: 'a,
R: 'a,
fn pipe_borrow_mut<'a, T, R>(
&'a mut self,
func: impl FnOnce(&'a mut T) -> R
) -> R where
Self: BorrowMut<T>,
T: 'a,
R: 'a,
Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
fn pipe_deref<'a, R>(&'a self, func: impl FnOnce(&'a Self::Target) -> R) -> R where
Self: Deref,
R: 'a,
Pipes a dereference into a function that cannot normally be called in suffix position. Read more
fn pipe_deref_mut<'a, R>(
&'a mut self,
func: impl FnOnce(&'a mut Self::Target) -> R
) -> R where
Self: DerefMut,
R: 'a,
fn pipe_deref_mut<'a, R>(
&'a mut self,
func: impl FnOnce(&'a mut Self::Target) -> R
) -> R where
Self: DerefMut,
R: 'a,
Pipes a mutable dereference into a function that cannot normally be called in suffix position. Read more
Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self where
Self: Borrow<B>,
B: ?Sized,
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self where
Self: Borrow<B>,
B: ?Sized,
Immutable access to the Borrow<B>
of a value. Read more
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self where
Self: BorrowMut<B>,
B: ?Sized,
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self where
Self: BorrowMut<B>,
B: ?Sized,
Mutable access to the BorrowMut<B>
of a value. Read more
Immutable access to the AsRef<R>
view of a value. Read more
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self where
Self: AsMut<R>,
R: ?Sized,
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self where
Self: AsMut<R>,
R: ?Sized,
Mutable access to the AsMut<R>
view of a value. Read more
Immutable access to the Deref::Target
of a value. Read more
Mutable access to the Deref::Target
of a value. Read more
Calls .tap()
only in debug builds, and is erased in release builds.
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
Calls .tap_mut()
only in debug builds, and is erased in release
builds. Read more
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self where
Self: Borrow<B>,
B: ?Sized,
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self where
Self: Borrow<B>,
B: ?Sized,
Calls .tap_borrow()
only in debug builds, and is erased in release
builds. Read more
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self where
Self: BorrowMut<B>,
B: ?Sized,
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self where
Self: BorrowMut<B>,
B: ?Sized,
Calls .tap_borrow_mut()
only in debug builds, and is erased in release
builds. Read more
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self where
Self: AsRef<R>,
R: ?Sized,
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self where
Self: AsRef<R>,
R: ?Sized,
Calls .tap_ref()
only in debug builds, and is erased in release
builds. Read more
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self where
Self: AsMut<R>,
R: ?Sized,
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self where
Self: AsMut<R>,
R: ?Sized,
Calls .tap_ref_mut()
only in debug builds, and is erased in release
builds. Read more
Provides immutable access for inspection. Read more
Calls tap
in debug builds, and does nothing in release builds.
Provides mutable access for modification. Read more
fn tap_mut_dbg<F, R>(self, func: F) -> Self where
F: FnOnce(&mut Self) -> R,
fn tap_mut_dbg<F, R>(self, func: F) -> Self where
F: FnOnce(&mut Self) -> R,
Calls tap_mut
in debug builds, and does nothing in release builds.
impl<T, U> TapAsRef<U> for T where
U: ?Sized,
impl<T, U> TapAsRef<U> for T where
U: ?Sized,
Provides immutable access to the reference for inspection.
fn tap_ref_dbg<F, R>(self, func: F) -> Self where
Self: AsRef<T>,
F: FnOnce(&T) -> R,
fn tap_ref_dbg<F, R>(self, func: F) -> Self where
Self: AsRef<T>,
F: FnOnce(&T) -> R,
Calls tap_ref
in debug builds, and does nothing in release builds.
fn tap_ref_mut<F, R>(self, func: F) -> Self where
Self: AsMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_ref_mut<F, R>(self, func: F) -> Self where
Self: AsMut<T>,
F: FnOnce(&mut T) -> R,
Provides mutable access to the reference for modification.
fn tap_ref_mut_dbg<F, R>(self, func: F) -> Self where
Self: AsMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_ref_mut_dbg<F, R>(self, func: F) -> Self where
Self: AsMut<T>,
F: FnOnce(&mut T) -> R,
Calls tap_ref_mut
in debug builds, and does nothing in release builds.
impl<T, U> TapBorrow<U> for T where
U: ?Sized,
impl<T, U> TapBorrow<U> for T where
U: ?Sized,
fn tap_borrow<F, R>(self, func: F) -> Self where
Self: Borrow<T>,
F: FnOnce(&T) -> R,
fn tap_borrow<F, R>(self, func: F) -> Self where
Self: Borrow<T>,
F: FnOnce(&T) -> R,
Provides immutable access to the borrow for inspection. Read more
fn tap_borrow_dbg<F, R>(self, func: F) -> Self where
Self: Borrow<T>,
F: FnOnce(&T) -> R,
fn tap_borrow_dbg<F, R>(self, func: F) -> Self where
Self: Borrow<T>,
F: FnOnce(&T) -> R,
Calls tap_borrow
in debug builds, and does nothing in release builds.
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_borrow_mut<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
Provides mutable access to the borrow for modification.
fn tap_borrow_mut_dbg<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
fn tap_borrow_mut_dbg<F, R>(self, func: F) -> Self where
Self: BorrowMut<T>,
F: FnOnce(&mut T) -> R,
Calls tap_borrow_mut
in debug builds, and does nothing in release
builds. Read more
Immutably dereferences self
for inspection.
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
fn tap_deref_dbg<F, R>(self, func: F) -> Self where
Self: Deref,
F: FnOnce(&Self::Target) -> R,
Calls tap_deref
in debug builds, and does nothing in release builds.
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
fn tap_deref_mut<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
Mutably dereferences self
for modification.
fn tap_deref_mut_dbg<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
fn tap_deref_mut_dbg<F, R>(self, func: F) -> Self where
Self: DerefMut,
F: FnOnce(&mut Self::Target) -> R,
Calls tap_deref_mut
in debug builds, and does nothing in release
builds. Read more