Struct slice_ring_buffer::SliceRingBuffer

source ·
pub struct SliceRingBuffer<T> { /* private fields */ }
Expand description

A double-ended queue that derefs into a slice.

It is implemented with a growable virtual ring buffer.

Implementations§

source§

impl<T> SliceRingBuffer<T>

source

pub fn new() -> Self

Creates a new empty deque.

§Examples
let deq = SliceRingBuffer::new();
source

pub unsafe fn from_raw_parts( ptr: *mut T, capacity: usize, elems: &mut [T], ) -> Self

Creates a SliceRingBuffer from its raw components.

The ptr must be a pointer to the beginning of the memory buffer from another SliceRingBuffer, capacity the capacity of this SliceRingBuffer, and elems the elements of this SliceRingBuffer.

source

pub fn with_capacity(n: usize) -> Self

Create an empty deque with capacity to hold n elements.

§Examples
let deq = SliceRingBuffer::with_capacity(10);
source

pub fn capacity(&self) -> usize

Returns the number of elements that the deque can hold without reallocating.

§Examples
let deq = SliceRingBuffer::with_capacity(10);
assert!(deq.capacity() >= 10);
source

pub fn len(&self) -> usize

Number of elements in the ring buffer.

§Examples
let mut deq = SliceRingBuffer::with_capacity(10);
assert!(deq.len() == 0);
deq.push_back(3);
assert!(deq.len() == 1);
source

pub fn is_full(&self) -> bool

Is the ring buffer full ?

§Examples
let mut deq = SliceRingBuffer::with_capacity(10);
assert!(!deq.is_full());
source

pub fn as_slice(&self) -> &[T]

Extracts a slice containing the entire deque.

source

pub fn as_mut_slice(&mut self) -> &mut [T]

Extracts a mutable slice containing the entire deque.

source

pub fn as_slices(&self) -> (&[T], &[T])

Returns a pair of slices, where the first slice contains the contents of the deque and the second one is empty.

source

pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T])

Returns a pair of slices, where the first slice contains the contents of the deque and the second one is empty.

source

pub unsafe fn tail_head_slice(&mut self) -> &mut [MaybeUninit<T>]

Returns the slice of uninitialized memory between the tail and the begin.

§Examples
let mut d = sdeq![1, 2, 3];
let cap = d.capacity();
let len = d.len();
unsafe {
    {
        // This slice contains the uninitialized elements in
        // the deque:
        let mut s = d.tail_head_slice();
        assert_eq!(s.len(), cap - len);
        // We can write to them and for example bump the tail of
        // the deque:
        s[0] = std::mem::MaybeUninit::new(4);
        s[1] = std::mem::MaybeUninit::new(5);
    }
    d.move_tail(2);
}
assert_eq!(d, sdeq![1, 2, 3, 4, 5]);
source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), AllocError>

Attempts to reserve capacity for inserting at least additional elements without reallocating. Does nothing if the capacity is already sufficient.

The collection always reserves memory in multiples of the page size.

§Panics

Panics if the new capacity overflows usize.

source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for inserting at least additional elements without reallocating. Does nothing if the capacity is already sufficient.

The collection always reserves memory in multiples of the page size.

§Panics

Panics if the new capacity overflows usize or on OOM.

source

pub fn reserve_exact(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more elements to be inserted in the given SliceDeq<T>. After calling reserve_exact, capacity will be greater than or equal to self.len() + additional. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions are expected.

§Panics

Panics if the new capacity overflows usize.

§Examples
let mut deq = sdeq![1];
deq.reserve_exact(10);
assert!(deq.capacity() >= 11);
source

pub unsafe fn move_head_unchecked(&mut self, x: isize)

Moves the deque head by x.

§Panics

If the head wraps over the tail the behavior is undefined, that is, if x is out-of-range [-(capacity() - len()), len()].

If -C debug-assertions=1 violating this pre-condition panic!s.

§Unsafe

It does not drop nor initialize elements, it just moves where the tail of the deque points to within the allocated buffer.

source

pub unsafe fn move_head(&mut self, x: isize)

Moves the deque head by x.

§Panics

If the head wraps over the tail, that is, if x is out-of-range [-(capacity() - len()), len()].

§Unsafe

It does not drop nor initialize elements, it just moves where the tail of the deque points to within the allocated buffer.

source

pub unsafe fn move_tail_unchecked(&mut self, x: isize)

Moves the deque tail by x.

§Panics

If the tail wraps over the head the behavior is undefined, that is, if x is out-of-range [-len(), capacity() - len()].

If -C debug-assertions=1 violating this pre-condition panic!s.

§Unsafe

It does not drop nor initialize elements, it just moves where the tail of the deque points to within the allocated buffer.

source

pub unsafe fn move_tail(&mut self, x: isize)

Moves the deque tail by x.

§Panics

If the tail wraps over the head, that is, if x is out-of-range [-len(), capacity() - len()].

§Unsafe

It does not drop nor initialize elements, it just moves where the tail of the deque points to within the allocated buffer.

source

pub unsafe fn steal_from_slice(s: &[T]) -> Self

Steal the elements from the slice s. You should mem::forget the slice afterwards.

source

pub fn append(&mut self, other: &mut Self)

Moves all the elements of other into Self, leaving other empty.

§Panics

Panics if the number of elements in the deque overflows a isize.

§Examples
let mut deq = sdeq![1, 2, 3];
let mut deq2 = sdeq![4, 5, 6];
deq.append(&mut deq2);
assert_eq!(deq, [1, 2, 3, 4, 5, 6]);
assert_eq!(deq2, []);
source

pub fn front(&self) -> Option<&T>

Provides a reference to the first element, or None if the deque is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.front(), None);

deq.push_back(1);
deq.push_back(2);
assert_eq!(deq.front(), Some(&1));
deq.push_front(3);
assert_eq!(deq.front(), Some(&3));
source

pub fn front_mut(&mut self) -> Option<&mut T>

Provides a mutable reference to the first element, or None if the deque is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.front(), None);

deq.push_back(1);
deq.push_back(2);
assert_eq!(deq.front(), Some(&1));
(*deq.front_mut().unwrap()) = 3;
assert_eq!(deq.front(), Some(&3));
source

pub fn back(&self) -> Option<&T>

Provides a reference to the last element, or None if the deque is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.back(), None);

deq.push_back(1);
deq.push_back(2);
assert_eq!(deq.back(), Some(&2));
deq.push_front(3);
assert_eq!(deq.back(), Some(&2));
source

pub fn back_mut(&mut self) -> Option<&mut T>

Provides a mutable reference to the last element, or None if the deque is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.front(), None);

deq.push_back(1);
deq.push_back(2);
assert_eq!(deq.back(), Some(&2));
(*deq.back_mut().unwrap()) = 3;
assert_eq!(deq.back(), Some(&3));
source

pub fn try_push_front(&mut self, value: T) -> Result<(), (T, AllocError)>

Attempts to prepend value to the deque.

§Examples
let mut deq = SliceRingBuffer::new();
deq.try_push_front(1).unwrap();
deq.try_push_front(2).unwrap();
assert_eq!(deq.front(), Some(&2));
source

pub fn push_front(&mut self, value: T)

Prepends value to the deque.

§Panics

On OOM.

§Examples
let mut deq = SliceRingBuffer::new();
deq.push_front(1);
deq.push_front(2);
assert_eq!(deq.front(), Some(&2));
source

pub fn try_push_back(&mut self, value: T) -> Result<(), (T, AllocError)>

Attempts to appends value to the deque.

§Examples
let mut deq = SliceRingBuffer::new();
deq.try_push_back(1).unwrap();
deq.try_push_back(3).unwrap();
assert_eq!(deq.back(), Some(&3));
source

pub fn push_back(&mut self, value: T)

Appends value to the deque.

§Panics

On OOM.

§Examples
let mut deq = SliceRingBuffer::new();
deq.push_back(1);
deq.push_back(3);
assert_eq!(deq.back(), Some(&3));
source

pub fn pop_front(&mut self) -> Option<T>

Removes the first element and returns it, or None if the deque is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.pop_front(), None);

deq.push_back(1);
deq.push_back(2);

assert_eq!(deq.pop_front(), Some(1));
assert_eq!(deq.pop_front(), Some(2));
assert_eq!(deq.pop_front(), None);
source

pub fn pop_back(&mut self) -> Option<T>

Removes the last element from the deque and returns it, or None if it is empty.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.pop_back(), None);

deq.push_back(1);
deq.push_back(3);

assert_eq!(deq.pop_back(), Some(3));
assert_eq!(deq.pop_back(), Some(1));
assert_eq!(deq.pop_back(), None);
source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the deque as much as possible.

It will drop down as close as possible to the length, but because SliceRingBuffer allocates memory in multiples of the page size the deque might still have capacity for inserting new elements without reallocating.

§Examples
let mut deq = SliceRingBuffer::with_capacity(15);
deq.extend(0..4);
assert!(deq.capacity() >= 15);
deq.shrink_to_fit();
assert!(deq.capacity() >= 4);
source

pub fn truncate_back(&mut self, len: usize)

Shortens the deque by removing excess elements from the back.

If len is greater than the SliceRingBuffer’s current length, this has no effect.

§Examples
let mut deq = sdeq![5, 10, 15];
assert_eq!(deq, [5, 10, 15]);
deq.truncate_back(1);
assert_eq!(deq, [5]);
source

pub fn truncate(&mut self, len: usize)

Shortens the deque by removing excess elements from the back.

If len is greater than the SliceRingBuffer’s current length, this has no effect. See truncate_back for examples.

source

pub fn truncate_front(&mut self, len: usize)

Shortens the deque by removing excess elements from the front.

If len is greater than the SliceRingBuffer’s current length, this has no effect.

§Examples
let mut deq = sdeq![5, 10, 15];
assert_eq!(deq, [5, 10, 15]);
deq.truncate_front(1);
assert_eq!(deq, [15]);
source

pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
where R: RangeBounds<usize>,

Creates a draining iterator that removes the specified range in the deque and yields the removed items.

Note 1: The element range is removed even if the iterator is only partially consumed or not consumed at all.

Note 2: It is unspecified how many elements are removed from the deque if the Drain value is leaked.

§Panics

Panics if the starting point is greater than the end point or if the end point is greater than the length of the deque.

§Examples
let mut deq = sdeq![1, 2, 3];
let u: Vec<_> = deq.drain(1..).collect();
assert_eq!(deq, &[1]);
assert_eq!(u, &[2, 3]);

// A full range clears the deque
deq.drain(..);
assert_eq!(deq, &[]);
source

pub fn clear(&mut self)

Removes all values from the deque.

§Examples
let mut deq = sdeq![1];
assert!(!deq.is_empty());
deq.clear();
assert!(deq.is_empty());
source

pub fn swap_remove_back(&mut self, index: usize) -> Option<T>

Removes the element at index and return it in O(1) by swapping the last element into its place.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.swap_remove_back(0), None);
deq.extend(1..4);
assert_eq!(deq, [1, 2, 3]);

assert_eq!(deq.swap_remove_back(0), Some(1));
assert_eq!(deq, [3, 2]);
source

pub fn swap_remove_front(&mut self, index: usize) -> Option<T>

Removes the element at index and returns it in O(1) by swapping the first element into its place.

§Examples
let mut deq = SliceRingBuffer::new();
assert_eq!(deq.swap_remove_front(0), None);
deq.extend(1..4);
assert_eq!(deq, [1, 2, 3]);

assert_eq!(deq.swap_remove_front(2), Some(3));
assert_eq!(deq, [2, 1]);
source

pub fn insert(&mut self, index: usize, element: T)

Inserts an element at index within the deque, shifting all elements with indices greater than or equal to index towards the back.

Element at index 0 is the front of the queue.

§Panics

Panics if index is greater than deque’s length

§Examples
let mut deq = sdeq!['a', 'b', 'c'];
assert_eq!(deq, &['a', 'b', 'c']);

deq.insert(1, 'd');
assert_eq!(deq, &['a', 'd', 'b', 'c']);
source

pub fn remove(&mut self, index: usize) -> T

Removes and returns the element at position index within the deque.

§Panics

Panics if index is out of bounds.

§Examples
let mut deq = sdeq![1, 2, 3, 4, 5];
assert_eq!(deq.remove(1), 2);
assert_eq!(deq, [1, 3, 4, 5]);
source

pub fn split_off(&mut self, at: usize) -> Self

Splits the collection into two at the given index.

Returns a newly allocated Self. self contains elements [0, at), and the returned Self contains elements [at, len).

Note that the capacity of self does not change.

§Panics

Panics if at > len.

§Examples
let mut deq = sdeq![1, 2, 3];
let deq2 = deq.split_off(1);
assert_eq!(deq, [1]);
assert_eq!(deq2, [2, 3]);
source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&T) -> bool,

Retains only the elements specified by the predicate.

That is, remove all elements e such that f(&e) returns false. This method operates in place and preserves the order of the retained elements.

§Examples
let mut deq = sdeq![1, 2, 3, 4];
deq.retain(|&x| x % 2 == 0);
assert_eq!(deq, [2, 4]);
source

pub fn dedup_by_key<F, K>(&mut self, key: F)
where F: FnMut(&mut T) -> K, K: PartialEq,

Removes all but the first of consecutive elements in the deque that resolve to the same key.

If the deque is sorted, this removes all duplicates.

§Examples
let mut deq = sdeq![10, 20, 21, 30, 20];

deq.dedup_by_key(|i| *i / 10);
assert_eq!(deq, [10, 20, 30, 20]);
source

pub fn dedup_by<F>(&mut self, same_bucket: F)
where F: FnMut(&mut T, &mut T) -> bool,

Removes all but the first of consecutive elements in the deque satisfying a given equality relation.

The same_bucket function is passed references to two elements from the deque, and returns true if the elements compare equal, or false if they do not. The elements are passed in opposite order from their order in the deque, so if same_bucket(a, b) returns true, a is removed.

If the deque is sorted, this removes all duplicates.

§Examples
let mut deq = sdeq!["foo", "bar", "Bar", "baz", "bar"];

deq.dedup_by(|a, b| a.eq_ignore_ascii_case(b));

assert_eq!(deq, ["foo", "bar", "baz", "bar"]);
source

pub fn splice<R, I>( &mut self, range: R, replace_with: I, ) -> Splice<'_, I::IntoIter>
where R: RangeBounds<usize>, I: IntoIterator<Item = T>,

Creates a splicing iterator that replaces the specified range in the deque with the given replace_with iterator and yields the removed items. replace_with does not need to be the same length as range.

Note 1: The element range is removed even if the iterator is not consumed until the end.

Note 2: It is unspecified how many elements are removed from the deque, if the Splice value is leaked.

Note 3: The input iterator replace_with is only consumed when the Splice value is dropped.

Note 4: This is optimal if:

  • The tail (elements in the deque after range) is empty,
  • or replace_with yields fewer elements than range’s length
  • or the lower bound of its size_hint() is exact.

Otherwise, a temporary deque is allocated and the tail is moved twice.

§Panics

Panics if the starting point is greater than the end point or if the end point is greater than the length of the deque.

§Examples
let mut deq = sdeq![1, 2, 3];
let new = [7, 8];
let u: SliceRingBuffer<_> = deq.splice(..2, new.iter().cloned()).collect();
assert_eq!(deq, &[7, 8, 3]);
assert_eq!(u, &[1, 2]);
source

pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F>
where F: FnMut(&mut T) -> bool,

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, then the element is removed and yielded. If the closure returns false, it will try again, and call the closure on the next element, seeing if it passes the test.

Using this method is equivalent to the following code:

let mut deq = SliceRingBuffer::new();
deq.extend(1..7);
let mut i = 0;
while i != deq.len() {
    if some_predicate(&mut deq[i]) {
        let val = deq.remove(i);
    // your code here
    } else {
        i += 1;
    }
}

But drain_filter is easier to use. drain_filter is also more efficient, because it can backshift the elements of the deque in bulk.

Note that drain_filter also lets you mutate every element in the filter closure, regardless of whether you choose to keep or remove it.

§Examples

Splitting a deque into evens and odds, reusing the original allocation:

let mut numbers = sdeq![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];

let evens = numbers
    .drain_filter(|x| *x % 2 == 0)
    .collect::<SliceRingBuffer<_>>();
let odds = numbers;

assert_eq!(sdeq![2, 4, 6, 8, 14], evens);
assert_eq!(odds, sdeq![1, 3, 5, 9, 11, 13, 15]);
source§

impl<T> SliceRingBuffer<T>
where T: Clone,

source

pub fn extend_from_slice(&mut self, other: &[T])

Clones and appends all elements in a slice to the SliceRingBuffer.

Iterates over the slice other, clones each element, and then appends it to this SliceRingBuffer. The other slice is traversed in-order.

Note that this function is same as extend except that it is specialized to work with slices instead. If and when Rust gets specialization this function will likely be deprecated (but still available).

§Examples
let mut deq = SliceRingBuffer::new();
deq.push_back(1);
deq.extend_from_slice(&[2, 3, 4]);
assert_eq!(deq, [1, 2, 3, 4]);
source

pub fn resize(&mut self, new_len: usize, value: T)

Modifies the SliceRingBuffer in-place so that len() is equal to new_len, either by removing excess elements or by appending clones of value to the back.

§Examples
let mut deq = sdeq![5, 10, 15];
assert_eq!(deq, [5, 10, 15]);

deq.resize(2, 0);
assert_eq!(deq, [5, 10]);

deq.resize(5, 20);
assert_eq!(deq, [5, 10, 20, 20, 20]);
source§

impl<T: Default> SliceRingBuffer<T>

source

pub fn resize_default(&mut self, new_len: usize)

Resizes the SliceRingBuffer in-place so that len is equal to new_len.

If new_len is greater than len, the SliceRingBuffer is extended by the difference, with each additional slot filled with Default::default(). If new_len is less than len, the SliceRingBuffer is simply truncated.

This method uses Default to create new values on every push. If you’d rather Clone a given value, use resize.

§Examples
let mut deq = sdeq![1, 2, 3];
deq.resize_default(5);
assert_eq!(deq, [1, 2, 3, 0, 0]);

deq.resize_default(2);
assert_eq!(deq, [1, 2]);
source§

impl<T: PartialEq> SliceRingBuffer<T>

source

pub fn dedup(&mut self)

Removes consecutive repeated elements in the deque.

If the deque is sorted, this removes all duplicates.

§Examples
let mut deq = sdeq![1, 2, 2, 3, 2];

deq.dedup();
assert_eq!(deq, [1, 2, 3, 2]);

deq.sort();
assert_eq!(deq, [1, 2, 2, 3]);

deq.dedup();
assert_eq!(deq, [1, 2, 3]);
source

pub fn remove_item(&mut self, item: &T) -> Option<T>

Removes the first instance of item from the deque if the item exists.

§Examples
let mut deq = sdeq![1, 2, 3, 1];

deq.remove_item(&1);
assert_eq!(deq, &[2, 3, 1]);
deq.remove_item(&1);
assert_eq!(deq, &[2, 3]);

Methods from Deref<Target = [T]>§

source

pub fn as_str(&self) -> &str

🔬This is a nightly-only experimental API. (ascii_char)

Views this slice of ASCII characters as a UTF-8 str.

source

pub fn as_bytes(&self) -> &[u8]

🔬This is a nightly-only experimental API. (ascii_char)

Views this slice of ASCII characters as a slice of u8 bytes.

1.23.0 · source

pub fn is_ascii(&self) -> bool

Checks if all bytes in this slice are within the ASCII range.

source

pub fn as_ascii(&self) -> Option<&[AsciiChar]>

🔬This is a nightly-only experimental API. (ascii_char)

If this slice is_ascii, returns it as a slice of ASCII characters, otherwise returns None.

source

pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]

🔬This is a nightly-only experimental API. (ascii_char)

Converts this slice of bytes into a slice of ASCII characters, without checking whether they’re valid.

§Safety

Every byte in the slice must be in 0..=127, or else this is UB.

1.23.0 · source

pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool

Checks that two slices are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

1.23.0 · source

pub fn make_ascii_uppercase(&mut self)

Converts this slice to its ASCII upper case equivalent in-place.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use to_ascii_uppercase.

1.23.0 · source

pub fn make_ascii_lowercase(&mut self)

Converts this slice to its ASCII lower case equivalent in-place.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use to_ascii_lowercase.

1.60.0 · source

pub fn escape_ascii(&self) -> EscapeAscii<'_>

Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.

§Examples

let s = b"0\t\r\n'\"\\\x9d";
let escaped = s.escape_ascii().to_string();
assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
1.80.0 · source

pub fn trim_ascii_start(&self) -> &[u8]

Returns a byte slice with leading ASCII whitespace bytes removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
assert_eq!(b"  ".trim_ascii_start(), b"");
assert_eq!(b"".trim_ascii_start(), b"");
1.80.0 · source

pub fn trim_ascii_end(&self) -> &[u8]

Returns a byte slice with trailing ASCII whitespace bytes removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
assert_eq!(b"  ".trim_ascii_end(), b"");
assert_eq!(b"".trim_ascii_end(), b"");
1.80.0 · source

pub fn trim_ascii(&self) -> &[u8]

Returns a byte slice with leading and trailing ASCII whitespace bytes removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
assert_eq!(b"  ".trim_ascii(), b"");
assert_eq!(b"".trim_ascii(), b"");
1.0.0 · source

pub fn len(&self) -> usize

Returns the number of elements in the slice.

§Examples
let a = [1, 2, 3];
assert_eq!(a.len(), 3);
1.0.0 · source

pub fn is_empty(&self) -> bool

Returns true if the slice has a length of 0.

§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());

let b: &[i32] = &[];
assert!(b.is_empty());
1.0.0 · source

pub fn first(&self) -> Option<&T>

Returns the first element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());
1.0.0 · source

pub fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the first element of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.first_mut());
1.5.0 · source

pub fn split_first(&self) -> Option<(&T, &[T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}
1.5.0 · source

pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);
1.5.0 · source

pub fn split_last(&self) -> Option<(&T, &[T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}
1.5.0 · source

pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);
1.0.0 · source

pub fn last(&self) -> Option<&T>

Returns the last element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());
1.0.0 · source

pub fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable reference to the last item in the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.last_mut());
1.77.0 · source

pub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>

Return an array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());

let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());

let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());
1.77.0 · source

pub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>

Return a mutable array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_chunk_mut::<2>() {
    first[0] = 5;
    first[1] = 4;
}
assert_eq!(x, &[5, 4, 2]);

assert_eq!(None, x.first_chunk_mut::<4>());
1.77.0 · source

pub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>

Return an array reference to the first N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first_chunk::<2>() {
    assert_eq!(first, &[0, 1]);
    assert_eq!(elements, &[2]);
}

assert_eq!(None, x.split_first_chunk::<4>());
1.77.0 · source

pub fn split_first_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T; N], &mut [T])>

Return a mutable array reference to the first N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
    first[0] = 3;
    first[1] = 4;
    elements[0] = 5;
}
assert_eq!(x, &[3, 4, 5]);

assert_eq!(None, x.split_first_chunk_mut::<4>());
1.77.0 · source

pub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>

Return an array reference to the last N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &[0, 1, 2];

if let Some((elements, last)) = x.split_last_chunk::<2>() {
    assert_eq!(elements, &[0]);
    assert_eq!(last, &[1, 2]);
}

assert_eq!(None, x.split_last_chunk::<4>());
1.77.0 · source

pub fn split_last_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T], &mut [T; N])>

Return a mutable array reference to the last N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
    last[0] = 3;
    last[1] = 4;
    elements[0] = 5;
}
assert_eq!(x, &[5, 3, 4]);

assert_eq!(None, x.split_last_chunk_mut::<4>());
1.77.0 · source

pub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>

Return an array reference to the last N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());

let v: &[i32] = &[10];
assert_eq!(None, v.last_chunk::<2>());

let w: &[i32] = &[];
assert_eq!(Some(&[]), w.last_chunk::<0>());
1.77.0 · source

pub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>

Return a mutable array reference to the last N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some(last) = x.last_chunk_mut::<2>() {
    last[0] = 10;
    last[1] = 20;
}
assert_eq!(x, &[0, 10, 20]);

assert_eq!(None, x.last_chunk_mut::<4>());
1.0.0 · source

pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>
where I: SliceIndex<[T]>,

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));
1.0.0 · source

pub fn get_mut<I>( &mut self, index: I, ) -> Option<&mut <I as SliceIndex<[T]>>::Output>
where I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

§Examples
let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);
1.0.0 · source

pub unsafe fn get_unchecked<I>( &self, index: I, ) -> &<I as SliceIndex<[T]>>::Output
where I: SliceIndex<[T]>,

Returns a reference to an element or subslice, without doing bounds checking.

For a safe alternative see get.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get(index).unwrap_unchecked(). It’s UB to call .get_unchecked(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked(..len + 1), .get_unchecked(..=len), or similar.

§Examples
let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}
1.0.0 · source

pub unsafe fn get_unchecked_mut<I>( &mut self, index: I, ) -> &mut <I as SliceIndex<[T]>>::Output
where I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice, without doing bounds checking.

For a safe alternative see get_mut.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get_mut(index).unwrap_unchecked(). It’s UB to call .get_unchecked_mut(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked_mut(..len + 1), .get_unchecked_mut(..=len), or similar.

§Examples
let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);
1.0.0 · source

pub fn as_ptr(&self) -> *const T

Returns a raw pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}
1.0.0 · source

pub fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.add(i) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);
1.48.0 · source

pub fn as_ptr_range(&self) -> Range<*const T>

Returns the two raw pointers spanning the slice.

The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.

See as_ptr for warnings on using these pointers. The end pointer requires extra caution, as it does not point to a valid element in the slice.

This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.

It can also be useful to check if a pointer to an element refers to an element of this slice:

let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;

assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));
1.48.0 · source

pub fn as_mut_ptr_range(&mut self) -> Range<*mut T>

Returns the two unsafe mutable pointers spanning the slice.

The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.

See as_mut_ptr for warnings on using these pointers. The end pointer requires extra caution, as it does not point to a valid element in the slice.

This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.

1.0.0 · source

pub fn swap(&mut self, a: usize, b: usize)

Swaps two elements in the slice.

If a equals to b, it’s guaranteed that elements won’t change value.

§Arguments
  • a - The index of the first element
  • b - The index of the second element
§Panics

Panics if a or b are out of bounds.

§Examples
let mut v = ["a", "b", "c", "d", "e"];
v.swap(2, 4);
assert!(v == ["a", "b", "e", "d", "c"]);
source

pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)

🔬This is a nightly-only experimental API. (slice_swap_unchecked)

Swaps two elements in the slice, without doing bounds checking.

For a safe alternative see swap.

§Arguments
  • a - The index of the first element
  • b - The index of the second element
§Safety

Calling this method with an out-of-bounds index is undefined behavior. The caller has to ensure that a < self.len() and b < self.len().

§Examples
#![feature(slice_swap_unchecked)]

let mut v = ["a", "b", "c", "d"];
// SAFETY: we know that 1 and 3 are both indices of the slice
unsafe { v.swap_unchecked(1, 3) };
assert!(v == ["a", "d", "c", "b"]);
1.0.0 · source

pub fn reverse(&mut self)

Reverses the order of elements in the slice, in place.

§Examples
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);
1.0.0 · source

pub fn iter(&self) -> Iter<'_, T>

Returns an iterator over the slice.

The iterator yields all items from start to end.

§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);
1.0.0 · source

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Returns an iterator that allows modifying each value.

The iterator yields all items from start to end.

§Examples
let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);
1.0.0 · source

pub fn windows(&self, size: usize) -> Windows<'_, T>

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

§Panics

Panics if size is 0.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.windows(3);
assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

There’s no windows_mut, as that existing would let safe code violate the “only one &mut at a time to the same thing” rule. However, you can sometimes use Cell::as_slice_of_cells in conjunction with windows to accomplish something similar:

use std::cell::Cell;

let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
let slice = &mut array[..];
let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
for w in slice_of_cells.windows(3) {
    Cell::swap(&w[0], &w[2]);
}
assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1.0.0 · source

pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());
1.0.0 · source

pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks_mut for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);
1.31.0 · source

pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See chunks for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
1.31.0 · source

pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

See chunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact_mut for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
source

pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, assuming that there’s no remainder.

§Safety

This may only be called when

  • The slice splits exactly into N-element chunks (aka self.len() % N == 0).
  • N != 0.
§Examples
#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
    // SAFETY: 1-element chunks never have remainder
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
    // SAFETY: The slice length (6) is a multiple of 3
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);

// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
source

pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the beginning of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);

If you expect the slice to be an exact multiple, you can combine let-else with an empty slice pattern:

#![feature(slice_as_chunks)]
let slice = ['R', 'u', 's', 't'];
let (chunks, []) = slice.as_chunks::<2>() else {
    panic!("slice didn't have even length")
};
assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
source

pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the end of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
source

pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>

🔬This is a nightly-only experimental API. (array_chunks)

Returns an iterator over N elements of the slice at a time, starting at the beginning of the slice.

The chunks are array references and do not overlap. If N does not divide the length of the slice, then the last up to N-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

This method is the const generic equivalent of chunks_exact.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
source

pub unsafe fn as_chunks_unchecked_mut<const N: usize>( &mut self, ) -> &mut [[T; N]]

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, assuming that there’s no remainder.

§Safety

This may only be called when

  • The slice splits exactly into N-element chunks (aka self.len() % N == 0).
  • N != 0.
§Examples
#![feature(slice_as_chunks)]
let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &mut [[char; 1]] =
    // SAFETY: 1-element chunks never have remainder
    unsafe { slice.as_chunks_unchecked_mut() };
chunks[0] = ['L'];
assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &mut [[char; 3]] =
    // SAFETY: The slice length (6) is a multiple of 3
    unsafe { slice.as_chunks_unchecked_mut() };
chunks[1] = ['a', 'x', '?'];
assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);

// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
source

pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the beginning of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

let (chunks, remainder) = v.as_chunks_mut();
remainder[0] = 9;
for chunk in chunks {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 9]);
source

pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the end of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

let (remainder, chunks) = v.as_rchunks_mut();
remainder[0] = 9;
for chunk in chunks {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[9, 1, 1, 2, 2]);
source

pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>

🔬This is a nightly-only experimental API. (array_chunks)

Returns an iterator over N elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable array references and do not overlap. If N does not divide the length of the slice, then the last up to N-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

This method is the const generic equivalent of chunks_exact_mut.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.array_chunks_mut() {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
source

pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>

🔬This is a nightly-only experimental API. (array_windows)

Returns an iterator over overlapping windows of N elements of a slice, starting at the beginning of the slice.

This is the const generic equivalent of windows.

If N is greater than the size of the slice, it will return no windows.

§Panics

Panics if N is 0. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());
1.31.0 · source

pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());
1.31.0 · source

pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks_mut for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[3, 2, 2, 1, 1]);
1.31.0 · source

pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of rchunks.

See rchunks for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);
1.31.0 · source

pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

See rchunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact_mut for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is 0.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[0, 2, 2, 1, 1]);
1.77.0 · source

pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
where F: FnMut(&T, &T) -> bool,

Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.

The predicate is called for every pair of consecutive elements, meaning that it is called on slice[0] and slice[1], followed by slice[1] and slice[2], and so on.

§Examples
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];

let mut iter = slice.chunk_by(|a, b| a == b);

assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);

This method can be used to extract the sorted subslices:

let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];

let mut iter = slice.chunk_by(|a, b| a <= b);

assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.77.0 · source

pub fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
where F: FnMut(&T, &T) -> bool,

Returns an iterator over the slice producing non-overlapping mutable runs of elements using the predicate to separate them.

The predicate is called for every pair of consecutive elements, meaning that it is called on slice[0] and slice[1], followed by slice[1] and slice[2], and so on.

§Examples
let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];

let mut iter = slice.chunk_by_mut(|a, b| a == b);

assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
assert_eq!(iter.next(), None);

This method can be used to extract the sorted subslices:

let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];

let mut iter = slice.chunk_by_mut(|a, b| a <= b);

assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.0.0 · source

pub fn split_at(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

§Panics

Panics if mid > len. For a non-panicking alternative see split_at_checked.

§Examples
let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_at(0);
   assert_eq!(left, []);
   assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(2);
    assert_eq!(left, [1, 2]);
    assert_eq!(right, [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(6);
    assert_eq!(left, [1, 2, 3, 4, 5, 6]);
    assert_eq!(right, []);
}
1.0.0 · source

pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Divides one mutable slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

§Panics

Panics if mid > len. For a non-panicking alternative see split_at_mut_checked.

§Examples
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_at_mut(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.79.0 · source

pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index, without doing bounds checking.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

For a safe alternative see split_at.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used. The caller has to ensure that 0 <= mid <= self.len().

§Examples
let v = [1, 2, 3, 4, 5, 6];

unsafe {
   let (left, right) = v.split_at_unchecked(0);
   assert_eq!(left, []);
   assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}

unsafe {
    let (left, right) = v.split_at_unchecked(2);
    assert_eq!(left, [1, 2]);
    assert_eq!(right, [3, 4, 5, 6]);
}

unsafe {
    let (left, right) = v.split_at_unchecked(6);
    assert_eq!(left, [1, 2, 3, 4, 5, 6]);
    assert_eq!(right, []);
}
1.79.0 · source

pub unsafe fn split_at_mut_unchecked( &mut self, mid: usize, ) -> (&mut [T], &mut [T])

Divides one mutable slice into two at an index, without doing bounds checking.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

For a safe alternative see split_at_mut.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used. The caller has to ensure that 0 <= mid <= self.len().

§Examples
let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
unsafe {
    let (left, right) = v.split_at_mut_unchecked(2);
    assert_eq!(left, [1, 0]);
    assert_eq!(right, [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.80.0 · source

pub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>

Divides one slice into two at an index, returning None if the slice is too short.

If mid ≤ len returns a pair of slices where the first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Otherwise, if mid > len, returns None.

§Examples
let v = [1, -2, 3, -4, 5, -6];

{
   let (left, right) = v.split_at_checked(0).unwrap();
   assert_eq!(left, []);
   assert_eq!(right, [1, -2, 3, -4, 5, -6]);
}

{
    let (left, right) = v.split_at_checked(2).unwrap();
    assert_eq!(left, [1, -2]);
    assert_eq!(right, [3, -4, 5, -6]);
}

{
    let (left, right) = v.split_at_checked(6).unwrap();
    assert_eq!(left, [1, -2, 3, -4, 5, -6]);
    assert_eq!(right, []);
}

assert_eq!(None, v.split_at_checked(7));
1.80.0 · source

pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut [T], &mut [T])>

Divides one mutable slice into two at an index, returning None if the slice is too short.

If mid ≤ len returns a pair of slices where the first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Otherwise, if mid > len, returns None.

§Examples
let mut v = [1, 0, 3, 0, 5, 6];

if let Some((left, right)) = v.split_at_mut_checked(2) {
    assert_eq!(left, [1, 0]);
    assert_eq!(right, [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);

assert_eq!(None, v.split_at_mut_checked(7));
1.0.0 · source

pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
1.0.0 · source

pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);
1.51.0 · source

pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred. The matched element is contained in the end of the previous subslice as a terminator.

§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.

let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());
1.51.0 · source

pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is contained in the previous subslice as a terminator.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
    let terminator_idx = group.len()-1;
    group[terminator_idx] = 1;
}
assert_eq!(v, [10, 40, 1, 20, 1, 1]);
1.27.0 · source

pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

§Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);
1.27.0 · source

pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

§Examples
let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
    count += 1;
    group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);
1.0.0 · source

pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples

Print the slice split once by numbers divisible by 3 (i.e., [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{group:?}");
}
1.0.0 · source

pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);
1.0.0 · source

pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e., [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{group:?}");
}
1.0.0 · source

pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples
let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);
source

pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
where F: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (slice_split_once)

Splits the slice on the first element that matches the specified predicate.

If any matching elements are present in the slice, returns the prefix before the match and suffix after. The matching element itself is not included. If no elements match, returns None.

§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.split_once(|&x| x == 2), Some((
    &[1][..],
    &[3, 2, 4][..]
)));
assert_eq!(s.split_once(|&x| x == 0), None);
source

pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
where F: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (slice_split_once)

Splits the slice on the last element that matches the specified predicate.

If any matching elements are present in the slice, returns the prefix before the match and suffix after. The matching element itself is not included. If no elements match, returns None.

§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.rsplit_once(|&x| x == 2), Some((
    &[1, 2, 3][..],
    &[4][..]
)));
assert_eq!(s.rsplit_once(|&x| x == 0), None);
1.0.0 · source

pub fn contains(&self, x: &T) -> bool
where T: PartialEq,

Returns true if the slice contains an element with the given value.

This operation is O(n).

Note that if you have a sorted slice, binary_search may be faster.

§Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

If you do not have a &T, but some other value that you can compare with one (for example, String implements PartialEq<str>), you can use iter().any:

let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));
1.0.0 · source

pub fn starts_with(&self, needle: &[T]) -> bool
where T: PartialEq,

Returns true if needle is a prefix of the slice or equal to the slice.

§Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(v.starts_with(&v));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));
1.0.0 · source

pub fn ends_with(&self, needle: &[T]) -> bool
where T: PartialEq,

Returns true if needle is a suffix of the slice or equal to the slice.

§Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(v.ends_with(&v));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));
1.51.0 · source

pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
where P: SlicePattern<Item = T> + ?Sized, T: PartialEq,

Returns a subslice with the prefix removed.

If the slice starts with prefix, returns the subslice after the prefix, wrapped in Some. If prefix is empty, simply returns the original slice. If prefix is equal to the original slice, returns an empty slice.

If the slice does not start with prefix, returns None.

§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);

let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
           Some(b"llo".as_ref()));
1.51.0 · source

pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
where P: SlicePattern<Item = T> + ?Sized, T: PartialEq,

Returns a subslice with the suffix removed.

If the slice ends with suffix, returns the subslice before the suffix, wrapped in Some. If suffix is empty, simply returns the original slice. If suffix is equal to the original slice, returns an empty slice.

If the slice does not end with suffix, returns None.

§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);

Binary searches this slice for a given element. If the slice is not sorted, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search_by, binary_search_by_key, and partition_point.

§Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });

If you want to find that whole range of matching items, rather than an arbitrary matching one, that can be done using partition_point:

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let low = s.partition_point(|x| x < &1);
assert_eq!(low, 1);
let high = s.partition_point(|x| x <= &1);
assert_eq!(high, 5);
let r = s.binary_search(&1);
assert!((low..high).contains(&r.unwrap()));

assert!(s[..low].iter().all(|&x| x < 1));
assert!(s[low..high].iter().all(|&x| x == 1));
assert!(s[high..].iter().all(|&x| x > 1));

// For something not found, the "range" of equal items is empty
assert_eq!(s.partition_point(|x| x < &11), 9);
assert_eq!(s.partition_point(|x| x <= &11), 9);
assert_eq!(s.binary_search(&11), Err(9));

If you want to insert an item to a sorted vector, while maintaining sort order, consider using partition_point:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
// If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
// `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
// to shift less elements.
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
1.0.0 · source

pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
where F: FnMut(&'a T) -> Ordering,

Binary searches this slice with a comparator function.

The comparator function should return an order code that indicates whether its argument is Less, Equal or Greater the desired target. If the slice is not sorted or if the comparator function does not implement an order consistent with the sort order of the underlying slice, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by_key, and partition_point.

§Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });
1.10.0 · source

pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
where F: FnMut(&'a T) -> B, B: Ord,

Binary searches this slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function. If the slice is not sorted by the key, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by, and partition_point.

§Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });
1.20.0 · source

pub fn sort_unstable(&mut self)
where T: Ord,

Sorts the slice without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

If T: Ord does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if T: Ord panics.

§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

If T: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [-5, 4, 1, -3, 2];

v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);
1.20.0 · source

pub fn sort_unstable_by<F>(&mut self, compare: F)
where F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparator function, without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

The comparator function should define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified.

If the comparator function does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if the comparator function panics. A total order (for all a, b and c):

  • total and antisymmetric: exactly one of a < b, a == b or a > b is true, and
  • transitive, a < b and b < c implies a < c. The same must hold for both == and >.

For example, while f64 doesn’t implement Ord because NaN != NaN, we can use partial_cmp as our sort function when we know the slice doesn’t contain a NaN.

let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

If T: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);
1.20.0 · source

pub fn sort_unstable_by_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

If K: Ord does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if K: Ord panics.

§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

If K: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [-5i32, 4, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);
1.49.0 · source

pub fn select_nth_unstable( &mut self, index: usize, ) -> (&mut [T], &mut T, &mut [T])
where T: Ord,

Reorder the slice such that the element at index after the reordering is at its final sorted position.

This reordering has the additional property that any value at position i < index will be less than or equal to any value at a position j > index. Additionally, this reordering is unstable (i.e. any number of equal elements may end up at position index), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

It returns a triplet of the following from the reordered slice: the subslice prior to index, the element at index, and the subslice after index; accordingly, the values in those two subslices will respectively all be less-than-or-equal-to and greater-than-or-equal-to the value of the element at index.

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is nearly fully sorted, where slice::sort may be faster.

§Panics

Panics when index >= len(), meaning it always panics on empty slices.

§Examples
let mut v = [-5i32, 4, 2, -3, 1];

// Find the items less than or equal to the median, the median, and greater than or equal to
// the median.
let (lesser, median, greater) = v.select_nth_unstable(2);

assert!(lesser == [-3, -5] || lesser == [-5, -3]);
assert_eq!(median, &mut 1);
assert!(greater == [4, 2] || greater == [2, 4]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [-3, -5, 1, 2, 4] ||
        v == [-5, -3, 1, 2, 4] ||
        v == [-3, -5, 1, 4, 2] ||
        v == [-5, -3, 1, 4, 2]);
1.49.0 · source

pub fn select_nth_unstable_by<F>( &mut self, index: usize, compare: F, ) -> (&mut [T], &mut T, &mut [T])
where F: FnMut(&T, &T) -> Ordering,

Reorder the slice with a comparator function such that the element at index after the reordering is at its final sorted position.

This reordering has the additional property that any value at position i < index will be less than or equal to any value at a position j > index using the comparator function. Additionally, this reordering is unstable (i.e. any number of equal elements may end up at position index), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

It returns a triplet of the following from the slice reordered according to the provided comparator function: the subslice prior to index, the element at index, and the subslice after index; accordingly, the values in those two subslices will respectively all be less-than-or-equal-to and greater-than-or-equal-to the value of the element at index.

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is nearly fully sorted, where slice::sort may be faster.

§Panics

Panics when index >= len(), meaning it always panics on empty slices.

§Examples
let mut v = [-5i32, 4, 2, -3, 1];

// Find the items less than or equal to the median, the median, and greater than or equal to
// the median as if the slice were sorted in descending order.
let (lesser, median, greater) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));

assert!(lesser == [4, 2] || lesser == [2, 4]);
assert_eq!(median, &mut 1);
assert!(greater == [-3, -5] || greater == [-5, -3]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [2, 4, 1, -5, -3] ||
        v == [2, 4, 1, -3, -5] ||
        v == [4, 2, 1, -5, -3] ||
        v == [4, 2, 1, -3, -5]);
1.49.0 · source

pub fn select_nth_unstable_by_key<K, F>( &mut self, index: usize, f: F, ) -> (&mut [T], &mut T, &mut [T])
where F: FnMut(&T) -> K, K: Ord,

Reorder the slice with a key extraction function such that the element at index after the reordering is at its final sorted position.

This reordering has the additional property that any value at position i < index will be less than or equal to any value at a position j > index using the key extraction function. Additionally, this reordering is unstable (i.e. any number of equal elements may end up at position index), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

It returns a triplet of the following from the slice reordered according to the provided key extraction function: the subslice prior to index, the element at index, and the subslice after index; accordingly, the values in those two subslices will respectively all be less-than-or-equal-to and greater-than-or-equal-to the value of the element at index.

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is nearly fully sorted, where slice::sort may be faster.

§Panics

Panics when index >= len(), meaning it always panics on empty slices.

§Examples
let mut v = [-5i32, 4, 1, -3, 2];

// Find the items less than or equal to the median, the median, and greater than or equal to
// the median as if the slice were sorted according to absolute value.
let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());

assert!(lesser == [1, 2] || lesser == [2, 1]);
assert_eq!(median, &mut -3);
assert!(greater == [4, -5] || greater == [-5, 4]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [1, 2, -3, 4, -5] ||
        v == [1, 2, -3, -5, 4] ||
        v == [2, 1, -3, 4, -5] ||
        v == [2, 1, -3, -5, 4]);
source

pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
where T: PartialEq,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all consecutive repeated elements to the end of the slice according to the PartialEq trait implementation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];

let (dedup, duplicates) = slice.partition_dedup();

assert_eq!(dedup, [1, 2, 3, 2, 1]);
assert_eq!(duplicates, [2, 3, 1]);
source

pub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])
where F: FnMut(&mut T, &mut T) -> bool,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice satisfying a given equality relation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

The same_bucket function is passed references to two elements from the slice and must determine if the elements compare equal. The elements are passed in opposite order from their order in the slice, so if same_bucket(a, b) returns true, a is moved at the end of the slice.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];

let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));

assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
source

pub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])
where F: FnMut(&mut T) -> K, K: PartialEq,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice that resolve to the same key.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];

let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);

assert_eq!(dedup, [10, 20, 30, 20, 11]);
assert_eq!(duplicates, [21, 30, 13]);
1.26.0 · source

pub fn rotate_left(&mut self, mid: usize)

Rotates the slice in-place such that the first mid elements of the slice move to the end while the last self.len() - mid elements move to the front. After calling rotate_left, the element previously at index mid will become the first element in the slice.

§Panics

This function will panic if mid is greater than the length of the slice. Note that mid == self.len() does not panic and is a no-op rotation.

§Complexity

Takes linear (in self.len()) time.

§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
1.26.0 · source

pub fn rotate_right(&mut self, k: usize)

Rotates the slice in-place such that the first self.len() - k elements of the slice move to the end while the last k elements move to the front. After calling rotate_right, the element previously at index self.len() - k will become the first element in the slice.

§Panics

This function will panic if k is greater than the length of the slice. Note that k == self.len() does not panic and is a no-op rotation.

§Complexity

Takes linear (in self.len()) time.

§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
1.50.0 · source

pub fn fill(&mut self, value: T)
where T: Clone,

Fills self with elements by cloning value.

§Examples
let mut buf = vec![0; 10];
buf.fill(1);
assert_eq!(buf, vec![1; 10]);
1.51.0 · source

pub fn fill_with<F>(&mut self, f: F)
where F: FnMut() -> T,

Fills self with elements returned by calling a closure repeatedly.

This method uses a closure to create new values. If you’d rather Clone a given value, use fill. If you want to use the Default trait to generate values, you can pass Default::default as the argument.

§Examples
let mut buf = vec![1; 10];
buf.fill_with(Default::default);
assert_eq!(buf, vec![0; 10]);
1.7.0 · source

pub fn clone_from_slice(&mut self, src: &[T])
where T: Clone,

Copies the elements from src into self.

The length of src must be the same as self.

§Panics

This function will panic if the two slices have different lengths.

§Examples

Cloning two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.clone_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use clone_from_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];

slice[..2].clone_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.clone_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);
1.9.0 · source

pub fn copy_from_slice(&mut self, src: &[T])
where T: Copy,

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

If T does not implement Copy, use clone_from_slice.

§Panics

This function will panic if the two slices have different lengths.

§Examples

Copying two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use copy_from_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);
1.37.0 · source

pub fn copy_within<R>(&mut self, src: R, dest: usize)
where R: RangeBounds<usize>, T: Copy,

Copies elements from one part of the slice to another part of itself, using a memmove.

src is the range within self to copy from. dest is the starting index of the range within self to copy to, which will have the same length as src. The two ranges may overlap. The ends of the two ranges must be less than or equal to self.len().

§Panics

This function will panic if either range exceeds the end of the slice, or if the end of src is before the start.

§Examples

Copying four bytes within a slice:

let mut bytes = *b"Hello, World!";

bytes.copy_within(1..5, 8);

assert_eq!(&bytes, b"Hello, Wello!");
1.27.0 · source

pub fn swap_with_slice(&mut self, other: &mut [T])

Swaps all elements in self with those in other.

The length of other must be the same as self.

§Panics

This function will panic if the two slices have different lengths.

§Example

Swapping two elements across slices:

let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];

slice1.swap_with_slice(&mut slice2[2..]);

assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);

Rust enforces that there can only be one mutable reference to a particular piece of data in a particular scope. Because of this, attempting to use swap_with_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct mutable sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.swap_with_slice(&mut right[1..]);
}

assert_eq!(slice, [4, 5, 3, 1, 2]);
1.30.0 · source

pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])

Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

§Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

§Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}
1.30.0 · source

pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])

Transmute the mutable slice to a mutable slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

§Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

§Examples

Basic usage:

unsafe {
    let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}
source

pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])

🔬This is a nightly-only experimental API. (portable_simd)

Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.

This is a safe wrapper around slice::align_to, so inherits the same guarantees as that method.

§Panics

This will panic if the size of the SIMD type is different from LANES times that of the scalar.

At the time of writing, the trait restrictions on Simd<T, LANES> keeps that from ever happening, as only power-of-two numbers of lanes are supported. It’s possible that, in the future, those restrictions might be lifted in a way that would make it possible to see panics from this method for something like LANES == 3.

§Examples
#![feature(portable_simd)]
use core::simd::prelude::*;

let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle

// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);

fn basic_simd_sum(x: &[f32]) -> f32 {
    use std::ops::Add;
    let (prefix, middle, suffix) = x.as_simd();
    let sums = f32x4::from_array([
        prefix.iter().copied().sum(),
        0.0,
        0.0,
        suffix.iter().copied().sum(),
    ]);
    let sums = middle.iter().copied().fold(sums, f32x4::add);
    sums.reduce_sum()
}

let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
source

pub fn as_simd_mut<const LANES: usize>( &mut self, ) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])

🔬This is a nightly-only experimental API. (portable_simd)

Split a mutable slice into a mutable prefix, a middle of aligned SIMD types, and a mutable suffix.

This is a safe wrapper around slice::align_to_mut, so inherits the same guarantees as that method.

This is the mutable version of slice::as_simd; see that for examples.

§Panics

This will panic if the size of the SIMD type is different from LANES times that of the scalar.

At the time of writing, the trait restrictions on Simd<T, LANES> keeps that from ever happening, as only power-of-two numbers of lanes are supported. It’s possible that, in the future, those restrictions might be lifted in a way that would make it possible to see panics from this method for something like LANES == 3.

source

pub fn is_sorted(&self) -> bool
where T: PartialOrd,

🔬This is a nightly-only experimental API. (is_sorted)

Checks if the elements of this slice are sorted.

That is, for each element a and its following element b, a <= b must hold. If the slice yields exactly zero or one element, true is returned.

Note that if Self::Item is only PartialOrd, but not Ord, the above definition implies that this function returns false if any two consecutive items are not comparable.

§Examples
#![feature(is_sorted)]
let empty: [i32; 0] = [];

assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());
source

pub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
where F: FnMut(&'a T, &'a T) -> bool,

🔬This is a nightly-only experimental API. (is_sorted)

Checks if the elements of this slice are sorted using the given comparator function.

Instead of using PartialOrd::partial_cmp, this function uses the given compare function to determine whether two elements are to be considered in sorted order.

§Examples
#![feature(is_sorted)]

assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));

assert!([0].is_sorted_by(|a, b| true));
assert!([0].is_sorted_by(|a, b| false));

let empty: [i32; 0] = [];
assert!(empty.is_sorted_by(|a, b| false));
assert!(empty.is_sorted_by(|a, b| true));
source

pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
where F: FnMut(&'a T) -> K, K: PartialOrd,

🔬This is a nightly-only experimental API. (is_sorted)

Checks if the elements of this slice are sorted using the given key extraction function.

Instead of comparing the slice’s elements directly, this function compares the keys of the elements, as determined by f. Apart from that, it’s equivalent to is_sorted; see its documentation for more information.

§Examples
#![feature(is_sorted)]

assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
1.52.0 · source

pub fn partition_point<P>(&self, pred: P) -> usize
where P: FnMut(&T) -> bool,

Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).

The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).

If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.

See also binary_search, binary_search_by, and binary_search_by_key.

§Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);

assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));

If all elements of the slice match the predicate, including if the slice is empty, then the length of the slice will be returned:

let a = [2, 4, 8];
assert_eq!(a.partition_point(|x| x < &100), a.len());
let a: [i32; 0] = [];
assert_eq!(a.partition_point(|x| x < &100), 0);

If you want to insert an item to a sorted vector, while maintaining sort order:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
source

pub fn take<'a, R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>
where R: OneSidedRange<usize>,

🔬This is a nightly-only experimental API. (slice_take)

Removes the subslice corresponding to the given range and returns a reference to it.

Returns None and does not modify the slice if the given range is out of bounds.

Note that this method only accepts one-sided ranges such as 2.. or ..6, but not 2..6.

§Examples

Taking the first three elements of a slice:

#![feature(slice_take)]

let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut first_three = slice.take(..3).unwrap();

assert_eq!(slice, &['d']);
assert_eq!(first_three, &['a', 'b', 'c']);

Taking the last two elements of a slice:

#![feature(slice_take)]

let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut tail = slice.take(2..).unwrap();

assert_eq!(slice, &['a', 'b']);
assert_eq!(tail, &['c', 'd']);

Getting None when range is out of bounds:

#![feature(slice_take)]

let mut slice: &[_] = &['a', 'b', 'c', 'd'];

assert_eq!(None, slice.take(5..));
assert_eq!(None, slice.take(..5));
assert_eq!(None, slice.take(..=4));
let expected: &[char] = &['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take(..4));
source

pub fn take_mut<'a, R>(self: &mut &'a mut [T], range: R) -> Option<&'a mut [T]>
where R: OneSidedRange<usize>,

🔬This is a nightly-only experimental API. (slice_take)

Removes the subslice corresponding to the given range and returns a mutable reference to it.

Returns None and does not modify the slice if the given range is out of bounds.

Note that this method only accepts one-sided ranges such as 2.. or ..6, but not 2..6.

§Examples

Taking the first three elements of a slice:

#![feature(slice_take)]

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut first_three = slice.take_mut(..3).unwrap();

assert_eq!(slice, &mut ['d']);
assert_eq!(first_three, &mut ['a', 'b', 'c']);

Taking the last two elements of a slice:

#![feature(slice_take)]

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut tail = slice.take_mut(2..).unwrap();

assert_eq!(slice, &mut ['a', 'b']);
assert_eq!(tail, &mut ['c', 'd']);

Getting None when range is out of bounds:

#![feature(slice_take)]

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];

assert_eq!(None, slice.take_mut(5..));
assert_eq!(None, slice.take_mut(..5));
assert_eq!(None, slice.take_mut(..=4));
let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take_mut(..4));
source

pub fn take_first<'a>(self: &mut &'a [T]) -> Option<&'a T>

🔬This is a nightly-only experimental API. (slice_take)

Removes the first element of the slice and returns a reference to it.

Returns None if the slice is empty.

§Examples
#![feature(slice_take)]

let mut slice: &[_] = &['a', 'b', 'c'];
let first = slice.take_first().unwrap();

assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'a');
source

pub fn take_first_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>

🔬This is a nightly-only experimental API. (slice_take)

Removes the first element of the slice and returns a mutable reference to it.

Returns None if the slice is empty.

§Examples
#![feature(slice_take)]

let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let first = slice.take_first_mut().unwrap();
*first = 'd';

assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'d');
source

pub fn take_last<'a>(self: &mut &'a [T]) -> Option<&'a T>

🔬This is a nightly-only experimental API. (slice_take)

Removes the last element of the slice and returns a reference to it.

Returns None if the slice is empty.

§Examples
#![feature(slice_take)]

let mut slice: &[_] = &['a', 'b', 'c'];
let last = slice.take_last().unwrap();

assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'c');
source

pub fn take_last_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>

🔬This is a nightly-only experimental API. (slice_take)

Removes the last element of the slice and returns a mutable reference to it.

Returns None if the slice is empty.

§Examples
#![feature(slice_take)]

let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let last = slice.take_last_mut().unwrap();
*last = 'd';

assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'d');
source

pub unsafe fn get_many_unchecked_mut<const N: usize>( &mut self, indices: [usize; N], ) -> [&mut T; N]

🔬This is a nightly-only experimental API. (get_many_mut)

Returns mutable references to many indices at once, without doing any checks.

For a safe alternative see get_many_mut.

§Safety

Calling this method with overlapping or out-of-bounds indices is undefined behavior even if the resulting references are not used.

§Examples
#![feature(get_many_mut)]

let x = &mut [1, 2, 4];

unsafe {
    let [a, b] = x.get_many_unchecked_mut([0, 2]);
    *a *= 10;
    *b *= 100;
}
assert_eq!(x, &[10, 2, 400]);
source

pub fn get_many_mut<const N: usize>( &mut self, indices: [usize; N], ) -> Result<[&mut T; N], GetManyMutError<N>>

🔬This is a nightly-only experimental API. (get_many_mut)

Returns mutable references to many indices at once.

Returns an error if any index is out-of-bounds, or if the same index was passed more than once.

§Examples
#![feature(get_many_mut)]

let v = &mut [1, 2, 3];
if let Ok([a, b]) = v.get_many_mut([0, 2]) {
    *a = 413;
    *b = 612;
}
assert_eq!(v, &[413, 2, 612]);
source

pub fn elem_offset(&self, element: &T) -> Option<usize>

🔬This is a nightly-only experimental API. (substr_range)

Returns the index that an element reference points to.

Returns None if element does not point within the slice or if it points between elements.

This method is useful for extending slice iterators like slice::split.

Note that this uses pointer arithmetic and does not compare elements. To find the index of an element via comparison, use .iter().position() instead.

§Panics

Panics if T is zero-sized.

§Examples

Basic usage:

#![feature(substr_range)]

let nums: &[u32] = &[1, 7, 1, 1];
let num = &nums[2];

assert_eq!(num, &1);
assert_eq!(nums.elem_offset(num), Some(2));

Returning None with an in-between element:

#![feature(substr_range)]

let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
let flat_arr: &[u32] = arr.as_flattened();

let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();

assert_eq!(ok_elm, &[0, 1]);
assert_eq!(weird_elm, &[1, 2]);

assert_eq!(arr.elem_offset(ok_elm), Some(0)); // Points to element 0
assert_eq!(arr.elem_offset(weird_elm), None); // Points between element 0 and 1
source

pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>

🔬This is a nightly-only experimental API. (substr_range)

Returns the range of indices that a subslice points to.

Returns None if subslice does not point within the slice or if it points between elements.

This method does not compare elements. Instead, this method finds the location in the slice that subslice was obtained from. To find the index of a subslice via comparison, instead use .windows().position().

This method is useful for extending slice iterators like slice::split.

Note that this may return a false positive (either Some(0..0) or Some(self.len()..self.len())) if subslice has a length of zero and points to the beginning or end of another, separate, slice.

§Panics

Panics if T is zero-sized.

§Examples

Basic usage:

#![feature(substr_range)]

let nums = &[0, 5, 10, 0, 0, 5];

let mut iter = nums
    .split(|t| *t == 0)
    .map(|n| nums.subslice_range(n).unwrap());

assert_eq!(iter.next(), Some(0..0));
assert_eq!(iter.next(), Some(1..3));
assert_eq!(iter.next(), Some(4..4));
assert_eq!(iter.next(), Some(5..6));
1.80.0 · source

pub fn as_flattened(&self) -> &[T]

Takes a &[[T; N]], and flattens it to a &[T].

§Panics

This panics if the length of the resulting slice would overflow a usize.

This is only possible when flattening a slice of arrays of zero-sized types, and thus tends to be irrelevant in practice. If size_of::<T>() > 0, this will never panic.

§Examples
assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);

assert_eq!(
    [[1, 2, 3], [4, 5, 6]].as_flattened(),
    [[1, 2], [3, 4], [5, 6]].as_flattened(),
);

let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
assert!(slice_of_empty_arrays.as_flattened().is_empty());

let empty_slice_of_arrays: &[[u32; 10]] = &[];
assert!(empty_slice_of_arrays.as_flattened().is_empty());
1.80.0 · source

pub fn as_flattened_mut(&mut self) -> &mut [T]

Takes a &mut [[T; N]], and flattens it to a &mut [T].

§Panics

This panics if the length of the resulting slice would overflow a usize.

This is only possible when flattening a slice of arrays of zero-sized types, and thus tends to be irrelevant in practice. If size_of::<T>() > 0, this will never panic.

§Examples
fn add_5_to_all(slice: &mut [i32]) {
    for i in slice {
        *i += 5;
    }
}

let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
add_5_to_all(array.as_flattened_mut());
assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
source

pub fn sort_floats(&mut self)

🔬This is a nightly-only experimental API. (sort_floats)

Sorts the slice of floats.

This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses the ordering defined by f32::total_cmp.

§Current implementation

This uses the same sorting algorithm as sort_unstable_by.

§Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];

v.sort_floats();
let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());
source

pub fn sort_floats(&mut self)

🔬This is a nightly-only experimental API. (sort_floats)

Sorts the slice of floats.

This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses the ordering defined by f64::total_cmp.

§Current implementation

This uses the same sorting algorithm as sort_unstable_by.

§Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];

v.sort_floats();
let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());
1.79.0 · source

pub fn utf8_chunks(&self) -> Utf8Chunks<'_>

Creates an iterator over the contiguous valid UTF-8 ranges of this slice, and the non-UTF-8 fragments in between.

§Examples

This function formats arbitrary but mostly-UTF-8 bytes into Rust source code in the form of a C-string literal (c"...").

use std::fmt::Write as _;

pub fn cstr_literal(bytes: &[u8]) -> String {
    let mut repr = String::new();
    repr.push_str("c\"");
    for chunk in bytes.utf8_chunks() {
        for ch in chunk.valid().chars() {
            // Escapes \0, \t, \r, \n, \\, \', \", and uses \u{...} for non-printable characters.
            write!(repr, "{}", ch.escape_debug()).unwrap();
        }
        for byte in chunk.invalid() {
            write!(repr, "\\x{:02X}", byte).unwrap();
        }
    }
    repr.push('"');
    repr
}

fn main() {
    let lit = cstr_literal(b"\xferris the \xf0\x9f\xa6\x80\x07");
    let expected = stringify!(c"\xFErris the 🦀\u{7}");
    assert_eq!(lit, expected);
}
1.0.0 · source

pub fn sort(&mut self)
where T: Ord,

Sorts the slice, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.

If T: Ord does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if T: Ord panics.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn’t allocate auxiliary memory. See sort_unstable. The exception are partially sorted slices, which may be better served with slice::sort.

§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

If T: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);
1.0.0 · source

pub fn sort_by<F>(&mut self, compare: F)
where F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparator function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.

The comparator function should define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified.

If the comparator function does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if the comparator function panics. A total order (for all a, b and c):

  • total and antisymmetric: exactly one of a < b, a == b or a > b is true, and
  • transitive, a < b and b < c implies a < c. The same must hold for both == and >.

For example, while f64 doesn’t implement Ord because NaN != NaN, we can use partial_cmp as our sort function when we know the slice doesn’t contain a NaN.

let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

If T: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);
1.7.0 · source

pub fn sort_by_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(m * n * log(n)) worst-case, where the key function is O(m).

If K: Ord does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if K: Ord panics.

§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

If K: Ord does not implement a total order, the implementation may panic.

§Examples
let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);
1.34.0 · source

pub fn sort_by_cached_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(m * n + n * log(n)) worst-case, where the key function is O(m).

During sorting, the key function is called at most once per element, by using temporary storage to remember the results of key evaluation. The order of calls to the key function is unspecified and may change in future versions of the standard library.

If K: Ord does not implement a total order the resulting order is unspecified. All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if K: Ord panics.

For simple key functions (e.g., functions that are property accesses or basic operations), sort_by_key is likely to be faster.

§Current implementation

The current implementation is based on instruction-parallel-network sort by Lukas Bergdoll, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on fully sorted and reversed inputs. And O(k * log(n)) where k is the number of distinct elements in the input. It leverages superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently perform the operation.

In the worst case, the algorithm allocates temporary storage in a Vec<(K, usize)> the length of the slice.

§Examples
let mut v = [-5i32, 4, 32, -3, 2];

v.sort_by_cached_key(|k| k.to_string());
assert!(v == [-3, -5, 2, 32, 4]);
1.0.0 · source

pub fn to_vec(&self) -> Vec<T>
where T: Clone,

Copies self into a new Vec.

§Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.
source

pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
where A: Allocator, T: Clone,

🔬This is a nightly-only experimental API. (allocator_api)

Copies self into a new Vec with an allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.
1.40.0 · source

pub fn repeat(&self, n: usize) -> Vec<T>
where T: Copy,

Creates a vector by copying a slice n times.

§Panics

This function will panic if the capacity would overflow.

§Examples

Basic usage:

assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);

A panic upon overflow:

// this will panic at runtime
b"0123456789abcdef".repeat(usize::MAX);
1.0.0 · source

pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output
where [T]: Concat<Item>, Item: ?Sized,

Flattens a slice of T into a single value Self::Output.

§Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
1.3.0 · source

pub fn join<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output
where [T]: Join<Separator>,

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

§Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
1.0.0 · source

pub fn connect<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output
where [T]: Join<Separator>,

👎Deprecated since 1.3.0: renamed to join

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

§Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
1.23.0 · source

pub fn to_ascii_uppercase(&self) -> Vec<u8>

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

1.23.0 · source

pub fn to_ascii_lowercase(&self) -> Vec<u8>

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

Trait Implementations§

source§

impl<T> AsMut<[T]> for SliceRingBuffer<T>

source§

fn as_mut(&mut self) -> &mut [T]

Converts this type into a mutable reference of the (usually inferred) input type.
source§

impl<T> AsRef<[T]> for SliceRingBuffer<T>

source§

fn as_ref(&self) -> &[T]

Converts this type into a shared reference of the (usually inferred) input type.
source§

impl<T: Clone> Clone for SliceRingBuffer<T>

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
source§

fn clone_from(&mut self, other: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug> Debug for SliceRingBuffer<T>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T> Default for SliceRingBuffer<T>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<T> Deref for SliceRingBuffer<T>

§

type Target = [T]

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T> DerefMut for SliceRingBuffer<T>

source§

fn deref_mut(&mut self) -> &mut Self::Target

Mutably dereferences the value.
source§

impl<T> Drop for SliceRingBuffer<T>

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
source§

impl<'a, T: 'a + Copy> Extend<&'a T> for SliceRingBuffer<T>

Extend implementation that copies elements out of references before pushing them onto the SliceRingBuffer.

This implementation is specialized for slice iterators, where it uses copy_from_slice to append the entire slice at once.

source§

fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<T> Extend<T> for SliceRingBuffer<T>

source§

fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<'a, T: Clone> From<&'a [T]> for SliceRingBuffer<T>

source§

fn from(s: &'a [T]) -> Self

Converts to this type from the input type.
source§

impl<'a, T: Clone> From<&'a mut [T]> for SliceRingBuffer<T>

source§

fn from(s: &'a mut [T]) -> Self

Converts to this type from the input type.
source§

impl<T> FromIterator<T> for SliceRingBuffer<T>

source§

fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self

Creates a value from an iterator. Read more
source§

impl<T: Hash> Hash for SliceRingBuffer<T>

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'a, T> IntoIterator for &'a SliceRingBuffer<T>

§

type Item = &'a T

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Iter<'a, T>

Creates an iterator from a value. Read more
source§

impl<'a, T> IntoIterator for &'a mut SliceRingBuffer<T>

§

type Item = &'a mut T

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> IterMut<'a, T>

Creates an iterator from a value. Read more
source§

impl<T> IntoIterator for SliceRingBuffer<T>

source§

fn into_iter(self) -> IntoIter<T>

Creates a consuming iterator, that is, one that moves each value out of the deque (from start to end). The deque cannot be used after calling this.

§Examples
let mut deq = sdeq!["a".to_string(), "b".to_string()];
let expected = ["a".to_string(), "b".to_string()];
for (i, s) in deq.into_iter().enumerate() {
    // s has type String, not &String
    println!("{}", s);
    assert_eq!(s, expected[i]);
}
§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?
source§

impl<'a, 'b, A, B> PartialEq<&'b [B]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 0]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 0]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 1]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 1]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 10]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 10]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 11]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 11]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 12]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 12]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 13]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 13]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 14]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 14]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 15]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 15]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 16]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 16]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 17]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 17]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 18]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 18]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 19]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 19]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 2]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 2]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 20]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 20]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 21]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 21]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 22]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 22]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 23]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 23]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 24]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 24]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 25]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 25]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 26]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 26]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 27]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 27]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 28]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 28]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 29]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 29]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 3]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 3]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 30]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 30]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 31]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 31]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 32]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 32]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 4]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 4]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 5]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 5]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 6]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 6]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 7]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 7]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 8]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 8]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b [B; 9]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b [B; 9]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<&'b mut [B]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &&'b mut [B]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 0]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 0]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 1]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 1]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 10]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 10]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 11]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 11]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 12]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 12]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 13]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 13]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 14]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 14]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 15]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 15]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 16]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 16]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 17]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 17]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 18]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 18]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 19]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 19]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 2]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 2]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 20]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 20]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 21]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 21]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 22]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 22]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 23]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 23]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 24]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 24]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 25]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 25]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 26]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 26]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 27]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 27]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 28]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 28]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 29]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 29]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 3]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 3]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 30]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 30]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 31]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 31]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 32]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 32]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 4]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 4]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 5]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 5]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 6]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 6]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 7]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 7]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 8]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 8]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<[B; 9]> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &[B; 9]) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<SliceRingBuffer<B>> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &SliceRingBuffer<B>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, A, B> PartialEq<Vec<B>> for SliceRingBuffer<A>
where A: PartialEq<B> + Sized,

source§

fn eq(&self, other: &Vec<B>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, T: PartialOrd> PartialOrd<&'a [T]> for SliceRingBuffer<T>

source§

fn partial_cmp(&self, other: &&'a [T]) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<T: PartialOrd> PartialOrd for SliceRingBuffer<T>

source§

fn partial_cmp(&self, other: &Self) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<T: Eq> Eq for SliceRingBuffer<T>

source§

impl<T> Send for SliceRingBuffer<T>
where T: Send,

source§

impl<T> Sync for SliceRingBuffer<T>
where T: Sync,

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.