1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright (C) 2019-2022 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use snarkvm_fields::{field, Field, One, PrimeField, Zero};
use snarkvm_utilities::{
    biginteger::{BigInteger256, BigInteger384},
    BigInteger,
    BitIteratorBE,
};

use crate::{
    bls12_377::{Fq, Fr},
    templates::bls12::Bls12Parameters,
    traits::{ModelParameters, ShortWeierstrassParameters},
    AffineCurve,
    ProjectiveCurve,
};

use std::ops::Neg;

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Bls12_377G1Parameters;

impl ModelParameters for Bls12_377G1Parameters {
    type BaseField = Fq;
    type ScalarField = Fr;
}

impl ShortWeierstrassParameters for Bls12_377G1Parameters {
    /// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
    const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) = (G1_GENERATOR_X, G1_GENERATOR_Y);
    /// B1 = x^2 - 1
    const B1: Fr = field!(
        Fr,
        BigInteger256([12574070832645531618, 10005695704657941814, 1564543351912391449, 657300228442948690])
    );
    /// B2 = x^2
    const B2: Fr = field!(
        Fr,
        BigInteger256([2417046298041509844, 11783911742408086824, 14689097366802547462, 270119112518072728])
    );
    /// COFACTOR = (x - 1)^2 / 3  = 30631250834960419227450344600217059328
    const COFACTOR: &'static [u64] = &[0x0, 0x170b5d4430000000];
    /// COFACTOR_INV = COFACTOR^{-1} mod r
    ///              = 5285428838741532253824584287042945485047145357130994810877
    const COFACTOR_INV: Fr = field!(
        Fr,
        BigInteger256([2013239619100046060, 4201184776506987597, 2526766393982337036, 1114629510922847535,])
    );
    const PHI: Fq = field!(
        Fq,
        BigInteger384([
            0xdacd106da5847973,
            0xd8fe2454bac2a79a,
            0x1ada4fd6fd832edc,
            0xfb9868449d150908,
            0xd63eb8aeea32285e,
            0x167d6a36f873fd0,
        ])
    );
    /// R128 = 2^128 - 1
    const R128: Fr = field!(
        Fr,
        BigInteger256([13717662654766427599, 14709524173037165000, 15342848074630952979, 736762107895475646])
    );
    /// WEIERSTRASS_A = 0
    const WEIERSTRASS_A: Fq = field!(Fq, BigInteger384([0x0, 0x0, 0x0, 0x0, 0x0, 0x0]));
    /// WEIERSTRASS_B = 1
    const WEIERSTRASS_B: Fq = field!(
        Fq,
        BigInteger384([
            0x2cdffffffffff68,
            0x51409f837fffffb1,
            0x9f7db3a98a7d3ff2,
            0x7b4e97b76e7c6305,
            0x4cf495bf803c84e8,
            0x8d6661e2fdf49a,
        ])
    );

    #[inline(always)]
    fn mul_by_a(_: &Self::BaseField) -> Self::BaseField {
        Self::BaseField::zero()
    }

    fn is_in_correct_subgroup_assuming_on_curve(p: &super::G1Affine) -> bool {
        let phi = |mut p: super::G1Affine| {
            debug_assert!(Self::PHI.pow([3]).is_one());
            p.x *= Self::PHI;
            p
        };
        let x_square = Fr::from(super::Bls12_377Parameters::X[0]).square();
        (phi(*p).mul_bits(BitIteratorBE::new_without_leading_zeros(x_square.to_bigint())).add_mixed(p)).is_zero()
    }

    fn glv_endomorphism(
        mut p: crate::templates::short_weierstrass_jacobian::Affine<Self>,
    ) -> crate::templates::short_weierstrass_jacobian::Affine<Self> {
        p.x *= &Self::PHI;
        p
    }

    fn mul_projective(
        p: crate::templates::short_weierstrass_jacobian::Projective<Self>,
        by: Self::ScalarField,
    ) -> crate::templates::short_weierstrass_jacobian::Projective<Self> {
        type ScalarBigInt = <Fr as PrimeField>::BigInteger;

        /// The scalar multiplication window size.
        const GLV_WINDOW_SIZE: usize = 4;

        /// The table size, used for w-ary NAF recoding.
        const TABLE_SIZE: i64 = 1 << (GLV_WINDOW_SIZE + 1);
        const HALF_TABLE_SIZE: i64 = 1 << (GLV_WINDOW_SIZE);
        const MASK_FOR_MOD_TABLE_SIZE: u64 = (TABLE_SIZE as u64) - 1;
        /// The GLV table length.
        const L: usize = 1 << (GLV_WINDOW_SIZE - 1);

        let decomposition = by.decompose(&Self::Q1, &Self::Q2, Self::B1, Self::B2, Self::R128, &Self::HALF_R);

        // Prepare tables.
        let mut t_1 = Vec::with_capacity(L);
        let double = crate::templates::short_weierstrass_jacobian::Affine::<Self>::from(p.double());
        t_1.push(p);
        for i in 1..L {
            t_1.push(t_1[i - 1].add_mixed(&double));
        }
        let t_1 =
            crate::templates::short_weierstrass_jacobian::Projective::<Self>::batch_normalization_into_affine(t_1);

        let t_2 = t_1.iter().copied().map(Self::glv_endomorphism).collect::<Vec<_>>();

        let mod_signed = |d| {
            let d_mod_window_size = i64::try_from(d & MASK_FOR_MOD_TABLE_SIZE).unwrap();
            if d_mod_window_size >= HALF_TABLE_SIZE { d_mod_window_size - TABLE_SIZE } else { d_mod_window_size }
        };
        let to_wnaf = |e: Self::ScalarField| -> Vec<i32> {
            let mut naf = vec![];
            let mut e = e.to_bigint();
            while !e.is_zero() {
                let next = if e.is_odd() {
                    let naf_sign = mod_signed(e.as_ref()[0]);
                    if naf_sign < 0 {
                        e.add_nocarry(&ScalarBigInt::from(-naf_sign as u64));
                    } else {
                        e.sub_noborrow(&ScalarBigInt::from(naf_sign as u64));
                    }
                    naf_sign.try_into().unwrap()
                } else {
                    0
                };
                naf.push(next);
                e.div2();
            }

            naf
        };

        let wnaf = |k1: Self::ScalarField, k2: Self::ScalarField, s1: bool, s2: bool| -> (Vec<i32>, Vec<i32>) {
            let mut wnaf_1 = to_wnaf(k1);
            let mut wnaf_2 = to_wnaf(k2);

            if s1 {
                wnaf_1.iter_mut().for_each(|e| *e = -*e);
            }
            if !s2 {
                wnaf_2.iter_mut().for_each(|e| *e = -*e);
            }

            (wnaf_1, wnaf_2)
        };

        let naf_add = |table: &[crate::templates::short_weierstrass_jacobian::Affine<Self>],
                       naf: i32,
                       acc: &mut crate::templates::short_weierstrass_jacobian::Projective<Self>| {
            if naf != 0 {
                let mut p_1 = table[(naf.abs() >> 1) as usize];
                if naf < 0 {
                    p_1 = p_1.neg();
                }
                acc.add_assign_mixed(&p_1);
            }
        };

        // Recode scalars.
        let (naf_1, naf_2) = wnaf(decomposition.0, decomposition.1, decomposition.2, decomposition.3);
        let max_len = naf_1.len().max(naf_2.len());
        let mut acc = crate::templates::short_weierstrass_jacobian::Projective::<Self>::zero();
        for i in (0..max_len).rev() {
            if i < naf_1.len() {
                naf_add(&t_1, naf_1[i], &mut acc)
            }

            if i < naf_2.len() {
                naf_add(&t_2, naf_2[i], &mut acc)
            }

            if i != 0 {
                acc.double_in_place();
            }
        }

        acc
    }
}

///
/// G1_GENERATOR_X =
/// 89363714989903307245735717098563574705733591463163614225748337416674727625843187853442697973404985688481508350822
///
/// See `snarkvm_algorithms::hash_to_curve::tests::bls12_377` for tests.
///
pub const G1_GENERATOR_X: Fq = field!(
    Fq,
    BigInteger384::new([
        1171681672315280277,
        6528257384425852712,
        7514971432460253787,
        2032708395764262463,
        12876543207309632302,
        107509843840671767
    ])
);

///
/// G1_GENERATOR_Y =
/// 3702177272937190650578065972808860481433820514072818216637796320125658674906330993856598323293086021583822603349
///
/// See `snarkvm_algorithms::hash_to_curve::tests::bls12_377` for tests.
///
pub const G1_GENERATOR_Y: Fq = field!(
    Fq,
    BigInteger384::new([
        13572190014569192121,
        15344828677741220784,
        17067903700058808083,
        10342263224753415805,
        1083990386877464092,
        21335464879237822
    ])
);

#[cfg(test)]
mod tests {
    use rand::Rng;
    use snarkvm_fields::Field;
    use snarkvm_utilities::{BitIteratorBE, TestRng, Uniform};

    use crate::AffineCurve;

    use super::{super::G1Affine, *};

    #[test]
    fn test_subgroup_membership() {
        let rng = &mut TestRng::default();

        for _ in 0..1000 {
            let p = G1Affine::rand(rng);
            assert!(Bls12_377G1Parameters::is_in_correct_subgroup_assuming_on_curve(&p));
            let x = Fq::rand(rng);
            let greatest = rng.gen();

            if let Some(p) = G1Affine::from_x_coordinate(x, greatest) {
                assert_eq!(
                    Bls12_377G1Parameters::is_in_correct_subgroup_assuming_on_curve(&p),
                    p.mul_bits(BitIteratorBE::new(Fr::characteristic())).is_zero(),
                );
            }
        }
    }
}