#[repr(transparent)]pub struct I256(pub [i128; 2]);
Expand description
A 256-bit signed integer type.
Tuple Fields§
§0: [i128; 2]
Implementations§
Source§impl I256
impl I256
Sourcepub const MIN: I256
pub const MIN: I256
The smallest value that can be represented by this integer type, -2255.
§Examples
Basic usage:
assert_eq!(
I256::MIN.to_string(),
"-57896044618658097711785492504343953926634992332820282019728792003956564819968",
);
Sourcepub const MAX: I256
pub const MAX: I256
The largest value that can be represented by this integer type, 2255 - 1.
§Examples
Basic usage:
assert_eq!(
I256::MAX.to_string(),
"57896044618658097711785492504343953926634992332820282019728792003956564819967",
);
Sourcepub fn from_str_radix(src: &str, radix: u32) -> Result<I256, ParseIntError>
pub fn from_str_radix(src: &str, radix: u32) -> Result<I256, ParseIntError>
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
or -
sign followed by
digits. Leading and trailing whitespace represent an error. Digits are a
subset of these characters, depending on radix
:
0-9
a-z
A-Z
§Panics
This function panics if radix
is not in the range from 2 to 36.
§Examples
Basic usage:
assert_eq!(I256::from_str_radix("A", 16), Ok(I256::new(10)));
Sourcepub const fn count_ones(self) -> u32
pub const fn count_ones(self) -> u32
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
let n = I256::new(0b100_0000);
assert_eq!(n.count_ones(), 1);
Sourcepub const fn count_zeros(self) -> u32
pub const fn count_zeros(self) -> u32
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
assert_eq!(I256::MAX.count_zeros(), 1);
Sourcepub fn leading_zeros(self) -> u32
pub fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of
self
.
§Examples
Basic usage:
let n = I256::new(-1);
assert_eq!(n.leading_zeros(), 0);
Sourcepub fn trailing_zeros(self) -> u32
pub fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation of
self
.
§Examples
Basic usage:
let n = I256::new(-4);
assert_eq!(n.trailing_zeros(), 2);
Sourcepub fn leading_ones(self) -> u32
pub fn leading_ones(self) -> u32
Returns the number of leading ones in the binary representation of
self
.
§Examples
Basic usage:
let n = I256::new(-1);
assert_eq!(n.leading_ones(), 256);
Sourcepub fn trailing_ones(self) -> u32
pub fn trailing_ones(self) -> u32
Returns the number of trailing ones in the binary representation of
self
.
§Examples
Basic usage:
let n = I256::new(3);
assert_eq!(n.trailing_ones(), 2);
Sourcepub fn rotate_left(self, n: u32) -> I256
pub fn rotate_left(self, n: u32) -> I256
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
let n = I256::from_words(
0x13f40000000000000000000000000000,
0x00000000000000000000000000004f76,
);
let m = I256::new(0x4f7613f4);
assert_eq!(n.rotate_left(16), m);
Sourcepub fn rotate_right(self, n: u32) -> I256
pub fn rotate_right(self, n: u32) -> I256
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
let n = I256::new(0x4f7613f4);
let m = I256::from_words(
0x13f40000000000000000000000000000,
0x00000000000000000000000000004f76,
);
assert_eq!(n.rotate_right(16), m);
Sourcepub const fn swap_bytes(self) -> I256
pub const fn swap_bytes(self) -> I256
Reverses the byte order of the integer.
§Examples
Basic usage:
let n = I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
n.swap_bytes(),
I256::from_words(
0x1f1e1d1c_1b1a1918_17161514_13121110,
0x0f0e0d0c_0b0a0908_07060504_03020100,
),
);
Sourcepub const fn reverse_bits(self) -> I256
pub const fn reverse_bits(self) -> I256
Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
§Examples
Basic usage:
let n = I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
n.reverse_bits(),
I256::from_words(
0xf878b838_d8589818_e868a828_c8488808_u128 as _,
0xf070b030_d0509010_e060a020_c0408000_u128 as _,
),
);
Sourcepub const fn from_be(x: I256) -> I256
pub const fn from_be(x: I256) -> I256
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
let n = I256::new(0x1A);
if cfg!(target_endian = "big") {
assert_eq!(I256::from_be(n), n)
} else {
assert_eq!(I256::from_be(n), n.swap_bytes())
}
Sourcepub const fn from_le(x: I256) -> I256
pub const fn from_le(x: I256) -> I256
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
let n = I256::new(0x1A);
if cfg!(target_endian = "little") {
assert_eq!(I256::from_le(n), n)
} else {
assert_eq!(I256::from_le(n), n.swap_bytes())
}
Sourcepub const fn to_be(self) -> I256
pub const fn to_be(self) -> I256
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
let n = I256::new(0x1A);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Sourcepub const fn to_le(self) -> I256
pub const fn to_le(self) -> I256
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
let n = I256::new(0x1A);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Sourcepub fn checked_add(self, rhs: I256) -> Option<I256>
pub fn checked_add(self, rhs: I256) -> Option<I256>
Checked integer addition. Computes self + rhs
, returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!((I256::MAX - 2).checked_add(I256::new(1)), Some(I256::MAX - 1));
assert_eq!((I256::MAX - 2).checked_add(I256::new(3)), None);
Sourcepub fn checked_add_unsigned(self, rhs: U256) -> Option<I256>
pub fn checked_add_unsigned(self, rhs: U256) -> Option<I256>
Checked addition with an unsigned integer. Computes self + rhs
,
returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!(I256::new(1).checked_add_unsigned(U256::new(2)), Some(I256::new(3)));
assert_eq!((I256::MAX - 2).checked_add_unsigned(U256::new(3)), None);
Sourcepub fn checked_sub(self, rhs: I256) -> Option<I256>
pub fn checked_sub(self, rhs: I256) -> Option<I256>
Checked integer subtraction. Computes self - rhs
, returning None
if
overflow occurred.
§Examples
Basic usage:
assert_eq!((I256::MIN + 2).checked_sub(I256::new(1)), Some(I256::MIN + 1));
assert_eq!((I256::MIN + 2).checked_sub(I256::new(3)), None);
Sourcepub fn checked_sub_unsigned(self, rhs: U256) -> Option<I256>
pub fn checked_sub_unsigned(self, rhs: U256) -> Option<I256>
Checked subtraction with an unsigned integer. Computes self - rhs
,
returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!(I256::new(1).checked_sub_unsigned(U256::new(2)), Some(I256::new(-1)));
assert_eq!((I256::MIN + 2).checked_sub_unsigned(U256::new(3)), None);
Sourcepub fn checked_mul(self, rhs: I256) -> Option<I256>
pub fn checked_mul(self, rhs: I256) -> Option<I256>
Checked integer multiplication. Computes self * rhs
, returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!(I256::MAX.checked_mul(I256::new(1)), Some(I256::MAX));
assert_eq!(I256::MAX.checked_mul(I256::new(2)), None);
Sourcepub fn checked_div(self, rhs: I256) -> Option<I256>
pub fn checked_div(self, rhs: I256) -> Option<I256>
Checked integer division. Computes self / rhs
, returning None
if
rhs == 0
or the division results in overflow.
§Examples
Basic usage:
assert_eq!((I256::MIN + 1).checked_div(I256::new(-1)), Some(I256::MAX));
assert_eq!(I256::MIN.checked_div(I256::new(-1)), None);
assert_eq!(I256::new(1).checked_div(I256::new(0)), None);
Sourcepub fn checked_div_euclid(self, rhs: I256) -> Option<I256>
pub fn checked_div_euclid(self, rhs: I256) -> Option<I256>
Checked Euclidean division. Computes self.div_euclid(rhs)
,
returning None
if rhs == 0
or the division results in overflow.
§Examples
Basic usage:
assert_eq!((I256::MIN + 1).checked_div_euclid(I256::new(-1)), Some(I256::MAX));
assert_eq!(I256::MIN.checked_div_euclid(I256::new(-1)), None);
assert_eq!(I256::new(1).checked_div_euclid(I256::new(0)), None);
Sourcepub fn checked_rem(self, rhs: I256) -> Option<I256>
pub fn checked_rem(self, rhs: I256) -> Option<I256>
Checked integer remainder. Computes self % rhs
, returning None
if
rhs == 0
or the division results in overflow.
§Examples
Basic usage:
assert_eq!(I256::new(5).checked_rem(I256::new(2)), Some(I256::new(1)));
assert_eq!(I256::new(5).checked_rem(I256::new(0)), None);
assert_eq!(I256::MIN.checked_rem(I256::new(-1)), None);
Sourcepub fn checked_rem_euclid(self, rhs: I256) -> Option<I256>
pub fn checked_rem_euclid(self, rhs: I256) -> Option<I256>
Checked Euclidean remainder. Computes self.rem_euclid(rhs)
, returning
None
if rhs == 0
or the division results in overflow.
§Examples
Basic usage:
assert_eq!(I256::new(5).checked_rem_euclid(I256::new(2)), Some(I256::new(1)));
assert_eq!(I256::new(5).checked_rem_euclid(I256::new(0)), None);
assert_eq!(I256::MIN.checked_rem_euclid(I256::new(-1)), None);
Sourcepub fn checked_neg(self) -> Option<I256>
pub fn checked_neg(self) -> Option<I256>
Checked negation. Computes -self
, returning None
if self == MIN
.
§Examples
Basic usage:
assert_eq!(I256::new(5).checked_neg(), Some(I256::new(-5)));
assert_eq!(I256::MIN.checked_neg(), None);
Sourcepub fn checked_shl(self, rhs: u32) -> Option<I256>
pub fn checked_shl(self, rhs: u32) -> Option<I256>
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
§Examples
Basic usage:
assert_eq!(I256::new(0x1).checked_shl(4), Some(I256::new(0x10)));
assert_eq!(I256::new(0x1).checked_shl(257), None);
Sourcepub fn checked_shr(self, rhs: u32) -> Option<I256>
pub fn checked_shr(self, rhs: u32) -> Option<I256>
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
§Examples
Basic usage:
assert_eq!(I256::new(0x10).checked_shr(4), Some(I256::new(0x1)));
assert_eq!(I256::new(0x10).checked_shr(256), None);
Sourcepub fn checked_abs(self) -> Option<I256>
pub fn checked_abs(self) -> Option<I256>
Checked absolute value. Computes self.abs()
, returning None
if
self == MIN
.
§Examples
Basic usage:
assert_eq!(I256::new(-5).checked_abs(), Some(I256::new(5)));
assert_eq!(I256::MIN.checked_abs(), None);
Sourcepub fn checked_pow(self, exp: u32) -> Option<I256>
pub fn checked_pow(self, exp: u32) -> Option<I256>
Checked exponentiation. Computes self.pow(exp)
, returning None
if
overflow occurred.
§Examples
Basic usage:
assert_eq!(I256::new(8).checked_pow(2), Some(I256::new(64)));
assert_eq!(I256::MAX.checked_pow(2), None);
Sourcepub fn saturating_add(self, rhs: I256) -> I256
pub fn saturating_add(self, rhs: I256) -> I256
Saturating integer addition. Computes self + rhs
, saturating at the
numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(100).saturating_add(I256::new(1)), 101);
assert_eq!(I256::MAX.saturating_add(I256::new(100)), I256::MAX);
assert_eq!(I256::MIN.saturating_add(I256::new(-1)), I256::MIN);
Sourcepub fn saturating_add_unsigned(self, rhs: U256) -> I256
pub fn saturating_add_unsigned(self, rhs: U256) -> I256
Saturating addition with an unsigned integer. Computes self + rhs
,
saturating at the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(1).saturating_add_unsigned(U256::new(2)), 3);
assert_eq!(I256::MAX.saturating_add_unsigned(U256::new(100)), I256::MAX);
Sourcepub fn saturating_sub(self, rhs: I256) -> I256
pub fn saturating_sub(self, rhs: I256) -> I256
Saturating integer subtraction. Computes self - rhs
, saturating at the
numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(100).saturating_sub(I256::new(127)), -27);
assert_eq!(I256::MIN.saturating_sub(I256::new(100)), I256::MIN);
assert_eq!(I256::MAX.saturating_sub(I256::new(-1)), I256::MAX);
Sourcepub fn saturating_sub_unsigned(self, rhs: U256) -> I256
pub fn saturating_sub_unsigned(self, rhs: U256) -> I256
Saturating subtraction with an unsigned integer. Computes self - rhs
,
saturating at the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(100).saturating_sub_unsigned(U256::new(127)), -27);
assert_eq!(I256::MIN.saturating_sub_unsigned(U256::new(100)), I256::MIN);
Sourcepub fn saturating_neg(self) -> I256
pub fn saturating_neg(self) -> I256
Saturating integer negation. Computes -self
, returning MAX
if
self == MIN
instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(100).saturating_neg(), -100);
assert_eq!(I256::new(-100).saturating_neg(), 100);
assert_eq!(I256::MIN.saturating_neg(), I256::MAX);
assert_eq!(I256::MAX.saturating_neg(), I256::MIN + 1);
Sourcepub fn saturating_abs(self) -> I256
pub fn saturating_abs(self) -> I256
Saturating absolute value. Computes self.abs()
, returning MAX
if
self == MIN
instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(100).saturating_abs(), 100);
assert_eq!(I256::new(-100).saturating_abs(), 100);
assert_eq!(I256::MIN.saturating_abs(), I256::MAX);
assert_eq!((I256::MIN + 1).saturating_abs(), I256::MAX);
Sourcepub fn saturating_mul(self, rhs: I256) -> I256
pub fn saturating_mul(self, rhs: I256) -> I256
Saturating integer multiplication. Computes self * rhs
, saturating at
the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(10).saturating_mul(I256::new(12)), 120);
assert_eq!(I256::MAX.saturating_mul(I256::new(10)), I256::MAX);
assert_eq!(I256::MIN.saturating_mul(I256::new(10)), I256::MIN);
Sourcepub fn saturating_div(self, rhs: I256) -> I256
pub fn saturating_div(self, rhs: I256) -> I256
Saturating integer division. Computes self / rhs
, saturating at the
numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(5).saturating_div(I256::new(2)), 2);
assert_eq!(I256::MAX.saturating_div(I256::new(-1)), I256::MIN + 1);
assert_eq!(I256::MIN.saturating_div(I256::new(-1)), I256::MAX);
let _ = I256::new(1).saturating_div(I256::new(0));
Sourcepub fn saturating_pow(self, exp: u32) -> I256
pub fn saturating_pow(self, exp: u32) -> I256
Saturating integer exponentiation. Computes self.pow(exp)
,
saturating at the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(I256::new(-4).saturating_pow(3), -64);
assert_eq!(I256::MIN.saturating_pow(2), I256::MAX);
assert_eq!(I256::MIN.saturating_pow(3), I256::MIN);
Sourcepub fn wrapping_add(self, rhs: I256) -> I256
pub fn wrapping_add(self, rhs: I256) -> I256
Wrapping (modular) addition. Computes self + rhs
, wrapping around at
the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_add(I256::new(27)), 127);
assert_eq!(I256::MAX.wrapping_add(I256::new(2)), I256::MIN + 1);
Sourcepub fn wrapping_add_unsigned(self, rhs: U256) -> I256
pub fn wrapping_add_unsigned(self, rhs: U256) -> I256
Wrapping (modular) addition with an unsigned integer. Computes
self + rhs
, wrapping around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_add_unsigned(U256::new(27)), 127);
assert_eq!(I256::MAX.wrapping_add_unsigned(U256::new(2)), I256::MIN + 1);
Sourcepub fn wrapping_sub(self, rhs: I256) -> I256
pub fn wrapping_sub(self, rhs: I256) -> I256
Wrapping (modular) subtraction. Computes self - rhs
, wrapping around
at the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(0).wrapping_sub(I256::new(127)), -127);
assert_eq!(I256::new(-2).wrapping_sub(I256::MAX), I256::MAX);
Sourcepub fn wrapping_sub_unsigned(self, rhs: U256) -> I256
pub fn wrapping_sub_unsigned(self, rhs: U256) -> I256
Wrapping (modular) subtraction with an unsigned integer. Computes
self - rhs
, wrapping around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(0).wrapping_sub_unsigned(U256::new(127)), -127);
assert_eq!(I256::new(-2).wrapping_sub_unsigned(U256::MAX), -1);
Sourcepub fn wrapping_mul(self, rhs: I256) -> I256
pub fn wrapping_mul(self, rhs: I256) -> I256
Wrapping (modular) multiplication. Computes self * rhs
, wrapping
around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(10).wrapping_mul(I256::new(12)), 120);
assert_eq!(I256::MAX.wrapping_mul(I256::new(2)), -2);
Sourcepub fn wrapping_div(self, rhs: I256) -> I256
pub fn wrapping_div(self, rhs: I256) -> I256
Wrapping (modular) division. Computes self / rhs
, wrapping around at
the boundary of the type.
The only case where such wrapping can occur is when one divides
MIN / -1
on a signed type (where MIN
is the negative minimal value
for the type); this is equivalent to -MIN
, a positive value that is
too large to represent in the type. In such a case, this function
returns MIN
itself.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_div(I256::new(10)), 10);
assert_eq!(I256::MIN.wrapping_div(I256::new(-1)), I256::MIN);
Sourcepub fn wrapping_div_euclid(self, rhs: I256) -> I256
pub fn wrapping_div_euclid(self, rhs: I256) -> I256
Wrapping Euclidean division. Computes self.div_euclid(rhs)
,
wrapping around at the boundary of the type.
Wrapping will only occur in MIN / -1
on a signed type (where MIN
is
the negative minimal value for the type). This is equivalent to -MIN
,
a positive value that is too large to represent in the type. In this
case, this method returns MIN
itself.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_div_euclid(I256::new(10)), 10);
assert_eq!(I256::MIN.wrapping_div_euclid(I256::new(-1)), I256::MIN);
Sourcepub fn wrapping_rem(self, rhs: I256) -> I256
pub fn wrapping_rem(self, rhs: I256) -> I256
Wrapping (modular) remainder. Computes self % rhs
, wrapping around at
the boundary of the type.
Such wrap-around never actually occurs mathematically; implementation
artifacts make x % y
invalid for MIN / -1
on a signed type (where
MINis the negative minimal value). In such a case, this function returns
0`.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_rem(I256::new(10)), 0);
assert_eq!(I256::MIN.wrapping_rem(I256::new(-1)), 0);
Sourcepub fn wrapping_rem_euclid(self, rhs: I256) -> I256
pub fn wrapping_rem_euclid(self, rhs: I256) -> I256
Wrapping Euclidean remainder. Computes self.rem_euclid(rhs)
, wrapping
around at the boundary of the type.
Wrapping will only occur in MIN % -1
on a signed type (where MIN
is
the negative minimal value for the type). In this case, this method
returns 0.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_rem_euclid(I256::new(10)), 0);
assert_eq!(I256::MIN.wrapping_rem_euclid(I256::new(-1)), 0);
Sourcepub fn wrapping_neg(self) -> I256
pub fn wrapping_neg(self) -> I256
Wrapping (modular) negation. Computes -self
, wrapping around at the
boundary of the type.
The only case where such wrapping can occur is when one negates MIN
on
a signed type (where MIN
is the negative minimal value for the type);
this is a positive value that is too large to represent in the type. In
such a case, this function returns MIN
itself.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_neg(), -100);
assert_eq!(I256::MIN.wrapping_neg(), I256::MIN);
Sourcepub fn wrapping_shl(self, rhs: u32) -> I256
pub fn wrapping_shl(self, rhs: u32) -> I256
Panic-free bitwise shift-left; yields self << mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to
exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the RHS of a wrapping
shift-left is restricted to the range of the type, rather than the bits
shifted out of the LHS being returned to the other end. The primitive
integer types all implement a rotate_left
function, which may be what you want instead.
§Examples
Basic usage:
assert_eq!(I256::new(-1).wrapping_shl(7), -128);
assert_eq!(I256::new(-1).wrapping_shl(128), I256::from_words(-1, 0));
assert_eq!(I256::new(-1).wrapping_shl(256), -1);
Sourcepub fn wrapping_shr(self, rhs: u32) -> I256
pub fn wrapping_shr(self, rhs: u32) -> I256
Panic-free bitwise shift-right; yields self >> mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to
exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the RHS of a
wrapping shift-right is restricted to the range of the type, rather than
the bits shifted out of the LHS being returned to the other end. The
primitive integer types all implement a
rotate_right
function, which may be what you
want instead.
§Examples
Basic usage:
assert_eq!(I256::new(-128).wrapping_shr(7), -1);
assert_eq!((-128i16).wrapping_shr(64), -128);
Sourcepub fn wrapping_abs(self) -> I256
pub fn wrapping_abs(self) -> I256
Wrapping (modular) absolute value. Computes self.abs()
, wrapping
around at the boundary of the type.
The only case where such wrapping can occur is when one takes the
absolute value of the negative minimal value for the type; this is a
positive value that is too large to represent in the type. In such a
case, this function returns MIN
itself.
§Examples
Basic usage:
assert_eq!(I256::new(100).wrapping_abs(), 100);
assert_eq!(I256::new(-100).wrapping_abs(), 100);
assert_eq!(I256::MIN.wrapping_abs(), I256::MIN);
assert_eq!(
I256::MIN.wrapping_abs().as_u256(),
U256::from_words(
0x80000000000000000000000000000000,
0x00000000000000000000000000000000,
),
);
Sourcepub fn unsigned_abs(self) -> U256
pub fn unsigned_abs(self) -> U256
Computes the absolute value of self
without any wrapping
or panicking.
§Examples
Basic usage:
assert_eq!(I256::new(100).unsigned_abs(), 100);
assert_eq!(I256::new(-100).unsigned_abs(), 100);
assert_eq!(
I256::MIN.unsigned_abs(),
U256::from_words(
0x80000000000000000000000000000000,
0x00000000000000000000000000000000,
),
);
Sourcepub fn wrapping_pow(self, exp: u32) -> I256
pub fn wrapping_pow(self, exp: u32) -> I256
Wrapping (modular) exponentiation. Computes self.pow(exp)
,
wrapping around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(I256::new(3).wrapping_pow(4), 81);
assert_eq!(3i8.wrapping_pow(5), -13);
assert_eq!(3i8.wrapping_pow(6), -39);
Sourcepub fn overflowing_add(self, rhs: I256) -> (I256, bool)
pub fn overflowing_add(self, rhs: I256) -> (I256, bool)
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_add(I256::new(2)), (I256::new(7), false));
assert_eq!(I256::MAX.overflowing_add(I256::new(1)), (I256::MIN, true));
Sourcepub fn overflowing_add_unsigned(self, rhs: U256) -> (I256, bool)
pub fn overflowing_add_unsigned(self, rhs: U256) -> (I256, bool)
Calculates self
+ rhs
with an unsigned rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(I256::new(1).overflowing_add_unsigned(U256::new(2)), (I256::new(3), false));
assert_eq!((I256::MIN).overflowing_add_unsigned(U256::MAX), (I256::MAX, false));
assert_eq!((I256::MAX - 2).overflowing_add_unsigned(U256::new(3)), (I256::MIN, true));
Sourcepub fn overflowing_sub(self, rhs: I256) -> (I256, bool)
pub fn overflowing_sub(self, rhs: I256) -> (I256, bool)
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_sub(I256::new(2)), (I256::new(3), false));
assert_eq!(I256::MIN.overflowing_sub(I256::new(1)), (I256::MAX, true));
Sourcepub fn overflowing_sub_unsigned(self, rhs: U256) -> (I256, bool)
pub fn overflowing_sub_unsigned(self, rhs: U256) -> (I256, bool)
Calculates self
- rhs
with an unsigned rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(I256::new(1).overflowing_sub_unsigned(U256::new(2)), (I256::new(-1), false));
assert_eq!((I256::MAX).overflowing_sub_unsigned(U256::MAX), (I256::MIN, false));
assert_eq!((I256::MIN + 2).overflowing_sub_unsigned(U256::new(3)), (I256::MAX, true));
Sourcepub fn abs_diff(self, other: I256) -> U256
pub fn abs_diff(self, other: I256) -> U256
Computes the absolute difference between self
and other
.
This function always returns the correct answer without overflow or panics by returning an unsigned integer.
§Examples
Basic usage:
assert_eq!(I256::new(100).abs_diff(I256::new(80)), 20);
assert_eq!(I256::new(100).abs_diff(I256::new(110)), 10);
assert_eq!(I256::new(-100).abs_diff(I256::new(80)), 180);
assert_eq!(I256::new(-100).abs_diff(I256::new(-120)), 20);
assert_eq!(I256::MIN.abs_diff(I256::MAX), U256::MAX);
assert_eq!(I256::MAX.abs_diff(I256::MIN), U256::MAX);
Sourcepub fn overflowing_mul(self, rhs: I256) -> (I256, bool)
pub fn overflowing_mul(self, rhs: I256) -> (I256, bool)
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_mul(I256::new(2)), (I256::new(10), false));
assert_eq!(I256::MAX.overflowing_mul(I256::new(2)), (I256::new(-2), true));
Sourcepub fn overflowing_div(self, rhs: I256) -> (I256, bool)
pub fn overflowing_div(self, rhs: I256) -> (I256, bool)
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_div(I256::new(2)), (I256::new(2), false));
assert_eq!(I256::MIN.overflowing_div(I256::new(-1)), (I256::MIN, true));
Sourcepub fn overflowing_div_euclid(self, rhs: I256) -> (I256, bool)
pub fn overflowing_div_euclid(self, rhs: I256) -> (I256, bool)
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating whether
an arithmetic overflow would occur. If an overflow would occur then
self
is returned.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_div_euclid(I256::new(2)), (I256::new(2), false));
assert_eq!(I256::MIN.overflowing_div_euclid(I256::new(-1)), (I256::MIN, true));
Sourcepub fn overflowing_rem(self, rhs: I256) -> (I256, bool)
pub fn overflowing_rem(self, rhs: I256) -> (I256, bool)
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_rem(I256::new(2)), (I256::new(1), false));
assert_eq!(I256::MIN.overflowing_rem(I256::new(-1)), (I256::new(0), true));
Sourcepub fn overflowing_rem_euclid(self, rhs: I256) -> (I256, bool)
pub fn overflowing_rem_euclid(self, rhs: I256) -> (I256, bool)
Overflowing Euclidean remainder. Calculates self.rem_euclid(rhs)
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(I256::new(5).overflowing_rem_euclid(I256::new(2)), (I256::new(1), false));
assert_eq!(I256::MIN.overflowing_rem_euclid(I256::new(-1)), (I256::new(0), true));
Sourcepub fn overflowing_neg(self) -> (I256, bool)
pub fn overflowing_neg(self) -> (I256, bool)
Negates self, overflowing if this is equal to the minimum value.
Returns a tuple of the negated version of self along with a boolean
indicating whether an overflow happened. If self
is the minimum value
(e.g., i32::MIN
for values of type i32
), then the minimum value will
be returned again and true
will be returned for an overflow happening.
§Examples
Basic usage:
assert_eq!(I256::new(2).overflowing_neg(), (I256::new(-2), false));
assert_eq!(I256::MIN.overflowing_neg(), (I256::MIN, true));
Sourcepub fn overflowing_shl(self, rhs: u32) -> (I256, bool)
pub fn overflowing_shl(self, rhs: u32) -> (I256, bool)
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
§Examples
Basic usage:
assert_eq!(I256::new(1).overflowing_shl(4), (I256::new(0x10), false));
assert_eq!(I256::new(1).overflowing_shl(260), (I256::new(0x10), true));
Sourcepub fn overflowing_shr(self, rhs: u32) -> (I256, bool)
pub fn overflowing_shr(self, rhs: u32) -> (I256, bool)
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
§Examples
Basic usage:
assert_eq!(I256::new(0x10).overflowing_shr(4), (I256::new(0x1), false));
assert_eq!(I256::new(0x10).overflowing_shr(260), (I256::new(0x1), true));
Sourcepub fn overflowing_abs(self) -> (I256, bool)
pub fn overflowing_abs(self) -> (I256, bool)
Computes the absolute value of self
.
Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., I256::MIN for values of type I256), then the minimum value will be returned again and true will be returned for an overflow happening.
§Examples
Basic usage:
assert_eq!(I256::new(10).overflowing_abs(), (I256::new(10), false));
assert_eq!(I256::new(-10).overflowing_abs(), (I256::new(10), false));
assert_eq!(I256::MIN.overflowing_abs(), (I256::MIN, true));
Sourcepub fn overflowing_pow(self, exp: u32) -> (I256, bool)
pub fn overflowing_pow(self, exp: u32) -> (I256, bool)
Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
§Examples
Basic usage:
assert_eq!(I256::new(3).overflowing_pow(4), (I256::new(81), false));
assert_eq!(
I256::new(10).overflowing_pow(77),
(
I256::from_words(
-46408779215366586471190473126206792002,
-113521875028918879454725857041952276480,
),
true,
)
);
Sourcepub fn pow(self, exp: u32) -> I256
pub fn pow(self, exp: u32) -> I256
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
assert_eq!(I256::new(2).pow(5), 32);
Sourcepub fn div_euclid(self, rhs: I256) -> I256
pub fn div_euclid(self, rhs: I256) -> I256
Calculates the quotient of Euclidean division of self
by rhs
.
This computes the integer q
such that self = q * rhs + r
, with
r = self.rem_euclid(rhs)
and 0 <= r < abs(rhs)
.
In other words, the result is self / rhs
rounded to the integer q
such that self >= q * rhs
.
If self > 0
, this is equal to round towards zero (the default in
Rust); if self < 0
, this is equal to round towards +/- infinity.
§Panics
This function will panic if rhs
is 0 or the division results in
overflow.
§Examples
Basic usage:
let a = I256::new(7);
let b = I256::new(4);
assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
Sourcepub fn rem_euclid(self, rhs: I256) -> I256
pub fn rem_euclid(self, rhs: I256) -> I256
Calculates the least nonnegative remainder of self (mod rhs)
.
This is done as if by the Euclidean division algorithm – given
r = self.rem_euclid(rhs)
, self = rhs * self.div_euclid(rhs) + r
, and
0 <= r < abs(rhs)
.
§Panics
This function will panic if rhs
is 0 or the division results in
overflow.
§Examples
Basic usage:
let a = I256::new(7);
let b = I256::new(4);
assert_eq!(a.rem_euclid(b), 3);
assert_eq!((-a).rem_euclid(b), 1);
assert_eq!(a.rem_euclid(-b), 3);
assert_eq!((-a).rem_euclid(-b), 1);
Sourcepub fn abs(self) -> I256
pub fn abs(self) -> I256
Computes the absolute value of self
.
§Overflow behavior
The absolute value of
I256::MIN
cannot be represented as an
I256
,
and attempting to calculate it will cause an overflow. This means
that code in debug mode will trigger a panic on this case and
optimized code will return
I256::MIN
without a panic.
§Examples
Basic usage:
assert_eq!(I256::new(10).abs(), 10);
assert_eq!(I256::new(-10).abs(), 10);
Sourcepub const fn signum(self) -> I256
pub const fn signum(self) -> I256
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
assert_eq!(I256::new(10).signum(), 1);
assert_eq!(I256::new(0).signum(), 0);
assert_eq!(I256::new(-10).signum(), -1);
Sourcepub const fn signum128(self) -> i128
pub const fn signum128(self) -> i128
Returns a number representing sign of self
as a 64-bit signed integer.
0
if the number is zero1
if the number is positive-1
if the number is negative
§Examples
Basic usage:
assert_eq!(I256::new(10).signum128(), 1i128);
assert_eq!(I256::new(0).signum128(), 0i128);
assert_eq!(I256::new(-10).signum128(), -1i128);
Sourcepub const fn is_positive(self) -> bool
pub const fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the number is zero
or negative.
§Examples
Basic usage:
assert!(I256::new(10).is_positive());
assert!(!I256::new(-10).is_positive());
Sourcepub const fn is_negative(self) -> bool
pub const fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the number is zero
or positive.
§Examples
Basic usage:
assert!(I256::new(-10).is_negative());
assert!(!I256::new(10).is_negative());
Sourcepub const fn to_be_bytes(self) -> [u8; 32]
pub const fn to_be_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in big-endian (network) byte order.
§Examples
let bytes = I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_be_bytes(),
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
],
);
Sourcepub const fn to_le_bytes(self) -> [u8; 32]
pub const fn to_le_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in little-endian byte order.
§Examples
let bytes = I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_le_bytes(),
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
],
);
Sourcepub const fn to_ne_bytes(self) -> [u8; 32]
pub const fn to_ne_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform’s native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate,
instead.
§Examples
let bytes = I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_ne_bytes(),
if cfg!(target_endian = "big") {
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]
} else {
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]
}
);
Sourcepub const fn from_be_bytes(bytes: [u8; 32]) -> I256
pub const fn from_be_bytes(bytes: [u8; 32]) -> I256
Create an integer value from its representation as a byte array in big endian.
§Examples
let value = I256::from_be_bytes([
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]);
assert_eq!(
value,
I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_be_i256(input: &mut &[u8]) -> I256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<I256>());
*input = rest;
I256::from_be_bytes(int_bytes.try_into().unwrap())
}
Sourcepub const fn from_le_bytes(bytes: [u8; 32]) -> I256
pub const fn from_le_bytes(bytes: [u8; 32]) -> I256
Create an integer value from its representation as a byte array in little endian.
§Examples
let value = I256::from_le_bytes([
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]);
assert_eq!(
value,
I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_le_i256(input: &mut &[u8]) -> I256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<I256>());
*input = rest;
I256::from_le_bytes(int_bytes.try_into().unwrap())
}
Sourcepub const fn from_ne_bytes(bytes: [u8; 32]) -> I256
pub const fn from_ne_bytes(bytes: [u8; 32]) -> I256
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform’s native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
§Examples
let value = I256::from_ne_bytes(if cfg!(target_endian = "big") {
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]
} else {
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]
});
assert_eq!(
value,
I256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
fn read_ne_i256(input: &mut &[u8]) -> I256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<I256>());
*input = rest;
I256::from_ne_bytes(int_bytes.try_into().unwrap())
}
Source§impl I256
impl I256
Sourcepub const fn new(value: i128) -> I256
pub const fn new(value: i128) -> I256
Creates a new 256-bit integer value from a primitive i128
integer.
Sourcepub const fn from_words(hi: i128, lo: i128) -> I256
pub const fn from_words(hi: i128, lo: i128) -> I256
Creates a new 256-bit integer value from high and low words.
Sourcepub const fn into_words(self) -> (i128, i128)
pub const fn into_words(self) -> (i128, i128)
Splits a 256-bit integer into high and low words.
Sourcepub fn low_mut(&mut self) -> &mut i128
pub fn low_mut(&mut self) -> &mut i128
Get the low 128-bit word for this signed integer as a mutable reference.
Sourcepub fn high_mut(&mut self) -> &mut i128
pub fn high_mut(&mut self) -> &mut i128
Get the high 128-bit word for this signed integer as a mutable reference.
Sourcepub fn from_str_hex(src: &str) -> Result<I256, ParseIntError>
pub fn from_str_hex(src: &str) -> Result<I256, ParseIntError>
Converts a prefixed string slice in base 16 to an integer.
The string is expected to be an optional +
or -
sign followed by
the 0x
prefix and finally the digits. Leading and trailing whitespace
represent an error.
§Examples
Basic usage:
assert_eq!(I256::from_str_hex("0x2A"), Ok(I256::new(42)));
assert_eq!(I256::from_str_hex("-0xa"), Ok(I256::new(-10)));
Sourcepub fn from_str_prefixed(src: &str) -> Result<I256, ParseIntError>
pub fn from_str_prefixed(src: &str) -> Result<I256, ParseIntError>
Converts a prefixed string slice in a base determined by the prefix to an integer.
The string is expected to be an optional +
or -
sign followed by
the one of the supported prefixes and finally the digits. Leading and
trailing whitespace represent an error. The base is determined based
on the prefix:
0b
: base2
0o
: base8
0x
: base16
- no prefix: base
10
§Examples
Basic usage:
assert_eq!(I256::from_str_prefixed("-0b101"), Ok(I256::new(-0b101)));
assert_eq!(I256::from_str_prefixed("0o17"), Ok(I256::new(0o17)));
assert_eq!(I256::from_str_prefixed("-0xa"), Ok(I256::new(-0xa)));
assert_eq!(I256::from_str_prefixed("42"), Ok(I256::new(42)));
Trait Implementations§
Source§impl AddAssign<&I256> for I256
impl AddAssign<&I256> for I256
Source§fn add_assign(&mut self, rhs: &I256)
fn add_assign(&mut self, rhs: &I256)
+=
operation. Read moreSource§impl AddAssign<&i128> for I256
impl AddAssign<&i128> for I256
Source§fn add_assign(&mut self, rhs: &i128)
fn add_assign(&mut self, rhs: &i128)
+=
operation. Read moreSource§impl AddAssign<i128> for I256
impl AddAssign<i128> for I256
Source§fn add_assign(&mut self, rhs: i128)
fn add_assign(&mut self, rhs: i128)
+=
operation. Read moreSource§impl AddAssign for I256
impl AddAssign for I256
Source§fn add_assign(&mut self, rhs: I256)
fn add_assign(&mut self, rhs: I256)
+=
operation. Read moreSource§impl BitAndAssign<&I256> for I256
impl BitAndAssign<&I256> for I256
Source§fn bitand_assign(&mut self, rhs: &I256)
fn bitand_assign(&mut self, rhs: &I256)
&=
operation. Read moreSource§impl BitAndAssign<&i128> for I256
impl BitAndAssign<&i128> for I256
Source§fn bitand_assign(&mut self, rhs: &i128)
fn bitand_assign(&mut self, rhs: &i128)
&=
operation. Read moreSource§impl BitAndAssign<i128> for I256
impl BitAndAssign<i128> for I256
Source§fn bitand_assign(&mut self, rhs: i128)
fn bitand_assign(&mut self, rhs: i128)
&=
operation. Read moreSource§impl BitAndAssign for I256
impl BitAndAssign for I256
Source§fn bitand_assign(&mut self, rhs: I256)
fn bitand_assign(&mut self, rhs: I256)
&=
operation. Read moreSource§impl BitOrAssign<&I256> for I256
impl BitOrAssign<&I256> for I256
Source§fn bitor_assign(&mut self, rhs: &I256)
fn bitor_assign(&mut self, rhs: &I256)
|=
operation. Read moreSource§impl BitOrAssign<&i128> for I256
impl BitOrAssign<&i128> for I256
Source§fn bitor_assign(&mut self, rhs: &i128)
fn bitor_assign(&mut self, rhs: &i128)
|=
operation. Read moreSource§impl BitOrAssign<i128> for I256
impl BitOrAssign<i128> for I256
Source§fn bitor_assign(&mut self, rhs: i128)
fn bitor_assign(&mut self, rhs: i128)
|=
operation. Read moreSource§impl BitOrAssign for I256
impl BitOrAssign for I256
Source§fn bitor_assign(&mut self, rhs: I256)
fn bitor_assign(&mut self, rhs: I256)
|=
operation. Read moreSource§impl BitXorAssign<&I256> for I256
impl BitXorAssign<&I256> for I256
Source§fn bitxor_assign(&mut self, rhs: &I256)
fn bitxor_assign(&mut self, rhs: &I256)
^=
operation. Read moreSource§impl BitXorAssign<&i128> for I256
impl BitXorAssign<&i128> for I256
Source§fn bitxor_assign(&mut self, rhs: &i128)
fn bitxor_assign(&mut self, rhs: &i128)
^=
operation. Read moreSource§impl BitXorAssign<i128> for I256
impl BitXorAssign<i128> for I256
Source§fn bitxor_assign(&mut self, rhs: i128)
fn bitxor_assign(&mut self, rhs: i128)
^=
operation. Read moreSource§impl BitXorAssign for I256
impl BitXorAssign for I256
Source§fn bitxor_assign(&mut self, rhs: I256)
fn bitxor_assign(&mut self, rhs: I256)
^=
operation. Read moreSource§impl DivAssign<&I256> for I256
impl DivAssign<&I256> for I256
Source§fn div_assign(&mut self, rhs: &I256)
fn div_assign(&mut self, rhs: &I256)
/=
operation. Read moreSource§impl DivAssign<&i128> for I256
impl DivAssign<&i128> for I256
Source§fn div_assign(&mut self, rhs: &i128)
fn div_assign(&mut self, rhs: &i128)
/=
operation. Read moreSource§impl DivAssign<i128> for I256
impl DivAssign<i128> for I256
Source§fn div_assign(&mut self, rhs: i128)
fn div_assign(&mut self, rhs: i128)
/=
operation. Read moreSource§impl DivAssign for I256
impl DivAssign for I256
Source§fn div_assign(&mut self, rhs: I256)
fn div_assign(&mut self, rhs: I256)
/=
operation. Read moreSource§impl MulAssign<&I256> for I256
impl MulAssign<&I256> for I256
Source§fn mul_assign(&mut self, rhs: &I256)
fn mul_assign(&mut self, rhs: &I256)
*=
operation. Read moreSource§impl MulAssign<&i128> for I256
impl MulAssign<&i128> for I256
Source§fn mul_assign(&mut self, rhs: &i128)
fn mul_assign(&mut self, rhs: &i128)
*=
operation. Read moreSource§impl MulAssign<i128> for I256
impl MulAssign<i128> for I256
Source§fn mul_assign(&mut self, rhs: i128)
fn mul_assign(&mut self, rhs: i128)
*=
operation. Read moreSource§impl MulAssign for I256
impl MulAssign for I256
Source§fn mul_assign(&mut self, rhs: I256)
fn mul_assign(&mut self, rhs: I256)
*=
operation. Read moreSource§impl Ord for I256
impl Ord for I256
Source§impl PartialOrd<i128> for I256
impl PartialOrd<i128> for I256
Source§impl PartialOrd for I256
impl PartialOrd for I256
Source§impl RemAssign<&I256> for I256
impl RemAssign<&I256> for I256
Source§fn rem_assign(&mut self, rhs: &I256)
fn rem_assign(&mut self, rhs: &I256)
%=
operation. Read moreSource§impl RemAssign<&i128> for I256
impl RemAssign<&i128> for I256
Source§fn rem_assign(&mut self, rhs: &i128)
fn rem_assign(&mut self, rhs: &i128)
%=
operation. Read moreSource§impl RemAssign<i128> for I256
impl RemAssign<i128> for I256
Source§fn rem_assign(&mut self, rhs: i128)
fn rem_assign(&mut self, rhs: i128)
%=
operation. Read moreSource§impl RemAssign for I256
impl RemAssign for I256
Source§fn rem_assign(&mut self, rhs: I256)
fn rem_assign(&mut self, rhs: I256)
%=
operation. Read moreSource§impl ShlAssign<&I256> for I256
impl ShlAssign<&I256> for I256
Source§fn shl_assign(&mut self, rhs: &I256)
fn shl_assign(&mut self, rhs: &I256)
<<=
operation. Read moreSource§impl ShlAssign<&I256> for U256
impl ShlAssign<&I256> for U256
Source§fn shl_assign(&mut self, rhs: &I256)
fn shl_assign(&mut self, rhs: &I256)
<<=
operation. Read moreSource§impl ShlAssign<&U256> for I256
impl ShlAssign<&U256> for I256
Source§fn shl_assign(&mut self, rhs: &U256)
fn shl_assign(&mut self, rhs: &U256)
<<=
operation. Read moreSource§impl ShlAssign<&i128> for I256
impl ShlAssign<&i128> for I256
Source§fn shl_assign(&mut self, rhs: &i128)
fn shl_assign(&mut self, rhs: &i128)
<<=
operation. Read moreSource§impl ShlAssign<&i16> for I256
impl ShlAssign<&i16> for I256
Source§fn shl_assign(&mut self, rhs: &i16)
fn shl_assign(&mut self, rhs: &i16)
<<=
operation. Read moreSource§impl ShlAssign<&i32> for I256
impl ShlAssign<&i32> for I256
Source§fn shl_assign(&mut self, rhs: &i32)
fn shl_assign(&mut self, rhs: &i32)
<<=
operation. Read moreSource§impl ShlAssign<&i64> for I256
impl ShlAssign<&i64> for I256
Source§fn shl_assign(&mut self, rhs: &i64)
fn shl_assign(&mut self, rhs: &i64)
<<=
operation. Read moreSource§impl ShlAssign<&i8> for I256
impl ShlAssign<&i8> for I256
Source§fn shl_assign(&mut self, rhs: &i8)
fn shl_assign(&mut self, rhs: &i8)
<<=
operation. Read moreSource§impl ShlAssign<&isize> for I256
impl ShlAssign<&isize> for I256
Source§fn shl_assign(&mut self, rhs: &isize)
fn shl_assign(&mut self, rhs: &isize)
<<=
operation. Read moreSource§impl ShlAssign<&u128> for I256
impl ShlAssign<&u128> for I256
Source§fn shl_assign(&mut self, rhs: &u128)
fn shl_assign(&mut self, rhs: &u128)
<<=
operation. Read moreSource§impl ShlAssign<&u16> for I256
impl ShlAssign<&u16> for I256
Source§fn shl_assign(&mut self, rhs: &u16)
fn shl_assign(&mut self, rhs: &u16)
<<=
operation. Read moreSource§impl ShlAssign<&u32> for I256
impl ShlAssign<&u32> for I256
Source§fn shl_assign(&mut self, rhs: &u32)
fn shl_assign(&mut self, rhs: &u32)
<<=
operation. Read moreSource§impl ShlAssign<&u64> for I256
impl ShlAssign<&u64> for I256
Source§fn shl_assign(&mut self, rhs: &u64)
fn shl_assign(&mut self, rhs: &u64)
<<=
operation. Read moreSource§impl ShlAssign<&u8> for I256
impl ShlAssign<&u8> for I256
Source§fn shl_assign(&mut self, rhs: &u8)
fn shl_assign(&mut self, rhs: &u8)
<<=
operation. Read moreSource§impl ShlAssign<&usize> for I256
impl ShlAssign<&usize> for I256
Source§fn shl_assign(&mut self, rhs: &usize)
fn shl_assign(&mut self, rhs: &usize)
<<=
operation. Read moreSource§impl ShlAssign<I256> for U256
impl ShlAssign<I256> for U256
Source§fn shl_assign(&mut self, rhs: I256)
fn shl_assign(&mut self, rhs: I256)
<<=
operation. Read moreSource§impl ShlAssign<U256> for I256
impl ShlAssign<U256> for I256
Source§fn shl_assign(&mut self, rhs: U256)
fn shl_assign(&mut self, rhs: U256)
<<=
operation. Read moreSource§impl ShlAssign<i128> for I256
impl ShlAssign<i128> for I256
Source§fn shl_assign(&mut self, rhs: i128)
fn shl_assign(&mut self, rhs: i128)
<<=
operation. Read moreSource§impl ShlAssign<i16> for I256
impl ShlAssign<i16> for I256
Source§fn shl_assign(&mut self, rhs: i16)
fn shl_assign(&mut self, rhs: i16)
<<=
operation. Read moreSource§impl ShlAssign<i32> for I256
impl ShlAssign<i32> for I256
Source§fn shl_assign(&mut self, rhs: i32)
fn shl_assign(&mut self, rhs: i32)
<<=
operation. Read moreSource§impl ShlAssign<i64> for I256
impl ShlAssign<i64> for I256
Source§fn shl_assign(&mut self, rhs: i64)
fn shl_assign(&mut self, rhs: i64)
<<=
operation. Read moreSource§impl ShlAssign<i8> for I256
impl ShlAssign<i8> for I256
Source§fn shl_assign(&mut self, rhs: i8)
fn shl_assign(&mut self, rhs: i8)
<<=
operation. Read moreSource§impl ShlAssign<isize> for I256
impl ShlAssign<isize> for I256
Source§fn shl_assign(&mut self, rhs: isize)
fn shl_assign(&mut self, rhs: isize)
<<=
operation. Read moreSource§impl ShlAssign<u128> for I256
impl ShlAssign<u128> for I256
Source§fn shl_assign(&mut self, rhs: u128)
fn shl_assign(&mut self, rhs: u128)
<<=
operation. Read moreSource§impl ShlAssign<u16> for I256
impl ShlAssign<u16> for I256
Source§fn shl_assign(&mut self, rhs: u16)
fn shl_assign(&mut self, rhs: u16)
<<=
operation. Read moreSource§impl ShlAssign<u32> for I256
impl ShlAssign<u32> for I256
Source§fn shl_assign(&mut self, rhs: u32)
fn shl_assign(&mut self, rhs: u32)
<<=
operation. Read moreSource§impl ShlAssign<u64> for I256
impl ShlAssign<u64> for I256
Source§fn shl_assign(&mut self, rhs: u64)
fn shl_assign(&mut self, rhs: u64)
<<=
operation. Read moreSource§impl ShlAssign<u8> for I256
impl ShlAssign<u8> for I256
Source§fn shl_assign(&mut self, rhs: u8)
fn shl_assign(&mut self, rhs: u8)
<<=
operation. Read moreSource§impl ShlAssign<usize> for I256
impl ShlAssign<usize> for I256
Source§fn shl_assign(&mut self, rhs: usize)
fn shl_assign(&mut self, rhs: usize)
<<=
operation. Read moreSource§impl ShlAssign for I256
impl ShlAssign for I256
Source§fn shl_assign(&mut self, rhs: I256)
fn shl_assign(&mut self, rhs: I256)
<<=
operation. Read moreSource§impl ShrAssign<&I256> for I256
impl ShrAssign<&I256> for I256
Source§fn shr_assign(&mut self, rhs: &I256)
fn shr_assign(&mut self, rhs: &I256)
>>=
operation. Read moreSource§impl ShrAssign<&I256> for U256
impl ShrAssign<&I256> for U256
Source§fn shr_assign(&mut self, rhs: &I256)
fn shr_assign(&mut self, rhs: &I256)
>>=
operation. Read moreSource§impl ShrAssign<&U256> for I256
impl ShrAssign<&U256> for I256
Source§fn shr_assign(&mut self, rhs: &U256)
fn shr_assign(&mut self, rhs: &U256)
>>=
operation. Read moreSource§impl ShrAssign<&i128> for I256
impl ShrAssign<&i128> for I256
Source§fn shr_assign(&mut self, rhs: &i128)
fn shr_assign(&mut self, rhs: &i128)
>>=
operation. Read moreSource§impl ShrAssign<&i16> for I256
impl ShrAssign<&i16> for I256
Source§fn shr_assign(&mut self, rhs: &i16)
fn shr_assign(&mut self, rhs: &i16)
>>=
operation. Read moreSource§impl ShrAssign<&i32> for I256
impl ShrAssign<&i32> for I256
Source§fn shr_assign(&mut self, rhs: &i32)
fn shr_assign(&mut self, rhs: &i32)
>>=
operation. Read moreSource§impl ShrAssign<&i64> for I256
impl ShrAssign<&i64> for I256
Source§fn shr_assign(&mut self, rhs: &i64)
fn shr_assign(&mut self, rhs: &i64)
>>=
operation. Read moreSource§impl ShrAssign<&i8> for I256
impl ShrAssign<&i8> for I256
Source§fn shr_assign(&mut self, rhs: &i8)
fn shr_assign(&mut self, rhs: &i8)
>>=
operation. Read moreSource§impl ShrAssign<&isize> for I256
impl ShrAssign<&isize> for I256
Source§fn shr_assign(&mut self, rhs: &isize)
fn shr_assign(&mut self, rhs: &isize)
>>=
operation. Read moreSource§impl ShrAssign<&u128> for I256
impl ShrAssign<&u128> for I256
Source§fn shr_assign(&mut self, rhs: &u128)
fn shr_assign(&mut self, rhs: &u128)
>>=
operation. Read moreSource§impl ShrAssign<&u16> for I256
impl ShrAssign<&u16> for I256
Source§fn shr_assign(&mut self, rhs: &u16)
fn shr_assign(&mut self, rhs: &u16)
>>=
operation. Read moreSource§impl ShrAssign<&u32> for I256
impl ShrAssign<&u32> for I256
Source§fn shr_assign(&mut self, rhs: &u32)
fn shr_assign(&mut self, rhs: &u32)
>>=
operation. Read moreSource§impl ShrAssign<&u64> for I256
impl ShrAssign<&u64> for I256
Source§fn shr_assign(&mut self, rhs: &u64)
fn shr_assign(&mut self, rhs: &u64)
>>=
operation. Read moreSource§impl ShrAssign<&u8> for I256
impl ShrAssign<&u8> for I256
Source§fn shr_assign(&mut self, rhs: &u8)
fn shr_assign(&mut self, rhs: &u8)
>>=
operation. Read moreSource§impl ShrAssign<&usize> for I256
impl ShrAssign<&usize> for I256
Source§fn shr_assign(&mut self, rhs: &usize)
fn shr_assign(&mut self, rhs: &usize)
>>=
operation. Read moreSource§impl ShrAssign<I256> for U256
impl ShrAssign<I256> for U256
Source§fn shr_assign(&mut self, rhs: I256)
fn shr_assign(&mut self, rhs: I256)
>>=
operation. Read moreSource§impl ShrAssign<U256> for I256
impl ShrAssign<U256> for I256
Source§fn shr_assign(&mut self, rhs: U256)
fn shr_assign(&mut self, rhs: U256)
>>=
operation. Read moreSource§impl ShrAssign<i128> for I256
impl ShrAssign<i128> for I256
Source§fn shr_assign(&mut self, rhs: i128)
fn shr_assign(&mut self, rhs: i128)
>>=
operation. Read moreSource§impl ShrAssign<i16> for I256
impl ShrAssign<i16> for I256
Source§fn shr_assign(&mut self, rhs: i16)
fn shr_assign(&mut self, rhs: i16)
>>=
operation. Read moreSource§impl ShrAssign<i32> for I256
impl ShrAssign<i32> for I256
Source§fn shr_assign(&mut self, rhs: i32)
fn shr_assign(&mut self, rhs: i32)
>>=
operation. Read moreSource§impl ShrAssign<i64> for I256
impl ShrAssign<i64> for I256
Source§fn shr_assign(&mut self, rhs: i64)
fn shr_assign(&mut self, rhs: i64)
>>=
operation. Read moreSource§impl ShrAssign<i8> for I256
impl ShrAssign<i8> for I256
Source§fn shr_assign(&mut self, rhs: i8)
fn shr_assign(&mut self, rhs: i8)
>>=
operation. Read moreSource§impl ShrAssign<isize> for I256
impl ShrAssign<isize> for I256
Source§fn shr_assign(&mut self, rhs: isize)
fn shr_assign(&mut self, rhs: isize)
>>=
operation. Read moreSource§impl ShrAssign<u128> for I256
impl ShrAssign<u128> for I256
Source§fn shr_assign(&mut self, rhs: u128)
fn shr_assign(&mut self, rhs: u128)
>>=
operation. Read moreSource§impl ShrAssign<u16> for I256
impl ShrAssign<u16> for I256
Source§fn shr_assign(&mut self, rhs: u16)
fn shr_assign(&mut self, rhs: u16)
>>=
operation. Read moreSource§impl ShrAssign<u32> for I256
impl ShrAssign<u32> for I256
Source§fn shr_assign(&mut self, rhs: u32)
fn shr_assign(&mut self, rhs: u32)
>>=
operation. Read moreSource§impl ShrAssign<u64> for I256
impl ShrAssign<u64> for I256
Source§fn shr_assign(&mut self, rhs: u64)
fn shr_assign(&mut self, rhs: u64)
>>=
operation. Read moreSource§impl ShrAssign<u8> for I256
impl ShrAssign<u8> for I256
Source§fn shr_assign(&mut self, rhs: u8)
fn shr_assign(&mut self, rhs: u8)
>>=
operation. Read moreSource§impl ShrAssign<usize> for I256
impl ShrAssign<usize> for I256
Source§fn shr_assign(&mut self, rhs: usize)
fn shr_assign(&mut self, rhs: usize)
>>=
operation. Read moreSource§impl ShrAssign for I256
impl ShrAssign for I256
Source§fn shr_assign(&mut self, rhs: I256)
fn shr_assign(&mut self, rhs: I256)
>>=
operation. Read moreSource§impl SubAssign<&I256> for I256
impl SubAssign<&I256> for I256
Source§fn sub_assign(&mut self, rhs: &I256)
fn sub_assign(&mut self, rhs: &I256)
-=
operation. Read moreSource§impl SubAssign<&i128> for I256
impl SubAssign<&i128> for I256
Source§fn sub_assign(&mut self, rhs: &i128)
fn sub_assign(&mut self, rhs: &i128)
-=
operation. Read moreSource§impl SubAssign<i128> for I256
impl SubAssign<i128> for I256
Source§fn sub_assign(&mut self, rhs: i128)
fn sub_assign(&mut self, rhs: i128)
-=
operation. Read moreSource§impl SubAssign for I256
impl SubAssign for I256
Source§fn sub_assign(&mut self, rhs: I256)
fn sub_assign(&mut self, rhs: I256)
-=
operation. Read moreimpl Copy for I256
impl Eq for I256
impl StructuralPartialEq for I256
Auto Trait Implementations§
impl Freeze for I256
impl RefUnwindSafe for I256
impl Send for I256
impl Sync for I256
impl Unpin for I256
impl UnwindSafe for I256
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
Source§impl<T, U, V, W, E, C> Compare<(T, U, V, W)> for C
impl<T, U, V, W, E, C> Compare<(T, U, V, W)> for C
type Error = E
fn compare( &self, a: &(T, U, V, W), b: &(T, U, V, W), ) -> Result<Ordering, <C as Compare<(T, U, V, W)>>::Error>
Source§impl<T, U, V, W, X, E, C> Compare<(T, U, V, W, X)> for C
impl<T, U, V, W, X, E, C> Compare<(T, U, V, W, X)> for C
type Error = E
fn compare( &self, a: &(T, U, V, W, X), b: &(T, U, V, W, X), ) -> Result<Ordering, <C as Compare<(T, U, V, W, X)>>::Error>
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.