pub enum DeriveJunction {
    Soft([u8; 32]),
    Hard([u8; 32]),
}
Expand description

A since derivation junction description. It is the single parameter used when creating a new secret key from an existing secret key and, in the case of SoftRaw and SoftIndex a new public key from an existing public key.

Variants§

§

Soft([u8; 32])

Soft (vanilla) derivation. Public keys have a correspondent derivation.

§

Hard([u8; 32])

Hard (“hardened”) derivation. Public keys do not have a correspondent derivation.

Implementations§

Consume self to return a soft derive junction with the same chain code.

Consume self to return a hard derive junction with the same chain code.

Examples found in repository?
src/crypto.rs (line 147)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
	pub fn hard<T: Encode>(index: T) -> Self {
		Self::soft(index).harden()
	}

	/// Consume self to return the chain code.
	pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
		}
	}

	/// Get a reference to the inner junction id.
	pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
		}
	}

	/// Return `true` if the junction is soft.
	pub fn is_soft(&self) -> bool {
		matches!(*self, DeriveJunction::Soft(_))
	}

	/// Return `true` if the junction is hard.
	pub fn is_hard(&self) -> bool {
		matches!(*self, DeriveJunction::Hard(_))
	}
}

#[cfg(feature = "full_crypto")]
impl<T: AsRef<str>> From<T> for DeriveJunction {
	fn from(j: T) -> DeriveJunction {
		let j = j.as_ref();
		let (code, hard) =
			if let Some(stripped) = j.strip_prefix('/') { (stripped, true) } else { (j, false) };

		let res = if let Ok(n) = str::parse::<u64>(code) {
			// number
			DeriveJunction::soft(n)
		} else {
			// something else
			DeriveJunction::soft(code)
		};

		if hard {
			res.harden()
		} else {
			res
		}
	}

Create a new soft (vanilla) DeriveJunction from a given, encodable, value.

If you need a hard junction, use hard().

Examples found in repository?
src/crypto.rs (line 147)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
	pub fn hard<T: Encode>(index: T) -> Self {
		Self::soft(index).harden()
	}

	/// Consume self to return the chain code.
	pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
		}
	}

	/// Get a reference to the inner junction id.
	pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
		}
	}

	/// Return `true` if the junction is soft.
	pub fn is_soft(&self) -> bool {
		matches!(*self, DeriveJunction::Soft(_))
	}

	/// Return `true` if the junction is hard.
	pub fn is_hard(&self) -> bool {
		matches!(*self, DeriveJunction::Hard(_))
	}
}

#[cfg(feature = "full_crypto")]
impl<T: AsRef<str>> From<T> for DeriveJunction {
	fn from(j: T) -> DeriveJunction {
		let j = j.as_ref();
		let (code, hard) =
			if let Some(stripped) = j.strip_prefix('/') { (stripped, true) } else { (j, false) };

		let res = if let Ok(n) = str::parse::<u64>(code) {
			// number
			DeriveJunction::soft(n)
		} else {
			// something else
			DeriveJunction::soft(code)
		};

		if hard {
			res.harden()
		} else {
			res
		}
	}

Create a new hard (hardened) DeriveJunction from a given, encodable, value.

If you need a soft junction, use soft().

Consume self to return the chain code.

Examples found in repository?
src/crypto.rs (line 120)
119
120
121
122
123
124
125
126
	pub fn soften(self) -> Self {
		DeriveJunction::Soft(self.unwrap_inner())
	}

	/// Consume self to return a hard derive junction with the same chain code.
	pub fn harden(self) -> Self {
		DeriveJunction::Hard(self.unwrap_inner())
	}

Get a reference to the inner junction id.

Return true if the junction is soft.

Return true if the junction is hard.

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Attempt to deserialise the value from input.
Attempt to skip the encoded value from input. Read more
Returns the fixed encoded size of the type. Read more
Convert self to a slice and append it to the destination.
If possible give a hint of expected size of the encoding. Read more
Convert self to an owned vector.
Convert self to a slice and then invoke the given closure with it.
Calculates the encoded size. Read more
Converts to this type from the input type.
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Decode Self and consume all of the given input data. Read more
Decode Self and consume all of the given input data. Read more
Decode Self with the given maximum recursion depth and advance input by the number of bytes consumed. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Compare self to key and return true if they are equal.

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Get a reference to the inner from the outer.

Get a mutable reference to the inner from the outer.

Return an encoding of Self prepended by given slice.
Should always be Self
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The counterpart to unchecked_from.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more