Struct sp_std::num::Saturating

source ·
pub struct Saturating<T>(pub T);
🔬This is a nightly-only experimental API. (saturating_int_impl)
Expand description

Provides intentionally-saturating arithmetic on T.

Operations like + on u32 values are intended to never overflow, and in some debug configurations overflow is detected and results in a panic. While most arithmetic falls into this category, some code explicitly expects and relies upon saturating arithmetic.

Saturating arithmetic can be achieved either through methods like saturating_add, or through the Saturating<T> type, which says that all standard arithmetic operations on the underlying value are intended to have saturating semantics.

The underlying value can be retrieved through the .0 index of the Saturating tuple.

Examples

#![feature(saturating_int_impl)]
use std::num::Saturating;

let max = Saturating(u32::MAX);
let one = Saturating(1u32);

assert_eq!(u32::MAX, (max + one).0);

Tuple Fields§

§0: T
🔬This is a nightly-only experimental API. (saturating_int_impl)

Implementations§

🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<usize>>::MIN, Saturating(usize::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<usize>>::MAX, Saturating(usize::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<usize>>::BITS, usize::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100usize);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0usize).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000usize);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ausize);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<usize>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<usize>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ausize);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<usize>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<usize>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ausize);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ausize);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3usize).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u8>>::MIN, Saturating(u8::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u8>>::MAX, Saturating(u8::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u8>>::BITS, u8::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100u8);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0u8).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000u8);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au8);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<u8>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<u8>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au8);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<u8>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<u8>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au8);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au8);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3u8).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u16>>::MIN, Saturating(u16::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u16>>::MAX, Saturating(u16::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u16>>::BITS, u16::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100u16);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0u16).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000u16);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au16);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<u16>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<u16>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au16);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<u16>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<u16>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au16);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au16);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3u16).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u32>>::MIN, Saturating(u32::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u32>>::MAX, Saturating(u32::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u32>>::BITS, u32::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100u32);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0u32).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000u32);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au32);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<u32>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<u32>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au32);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<u32>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<u32>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au32);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au32);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3u32).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u64>>::MIN, Saturating(u64::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u64>>::MAX, Saturating(u64::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u64>>::BITS, u64::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100u64);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0u64).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000u64);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au64);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<u64>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<u64>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au64);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<u64>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<u64>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au64);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au64);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3u64).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u128>>::MIN, Saturating(u128::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u128>>::MAX, Saturating(u128::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<u128>>::BITS, u128::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100u128);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0u128).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000u128);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au128);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<u128>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<u128>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au128);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<u128>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<u128>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au128);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Au128);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3u128).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<isize>>::MIN, Saturating(isize::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<isize>>::MAX, Saturating(isize::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<isize>>::BITS, isize::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100isize);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0isize).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000isize);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Aisize);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<isize>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<isize>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Aisize);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<isize>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<isize>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Aisize);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Aisize);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3isize).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i8>>::MIN, Saturating(i8::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i8>>::MAX, Saturating(i8::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i8>>::BITS, i8::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100i8);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0i8).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000i8);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai8);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<i8>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<i8>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai8);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<i8>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<i8>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai8);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai8);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i16>>::MIN, Saturating(i16::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i16>>::MAX, Saturating(i16::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i16>>::BITS, i16::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100i16);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0i16).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000i16);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai16);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<i16>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<i16>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai16);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<i16>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<i16>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai16);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai16);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i16).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i32>>::MIN, Saturating(i32::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i32>>::MAX, Saturating(i32::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i32>>::BITS, i32::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100i32);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0i32).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000i32);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai32);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<i32>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<i32>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai32);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<i32>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<i32>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai32);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai32);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i32).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i64>>::MIN, Saturating(i64::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i64>>::MAX, Saturating(i64::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i64>>::BITS, i64::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100i64);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0i64).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000i64);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai64);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<i64>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<i64>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai64);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<i64>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<i64>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai64);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai64);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i64).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i128>>::MIN, Saturating(i128::MIN));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i128>>::MAX, Saturating(i128::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the size of this integer type in bits.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(<Saturating<i128>>::BITS, i128::BITS);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b01001100i128);

assert_eq!(n.count_ones(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(!0i128).count_zeros(), 0);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0101000i128);

assert_eq!(n.trailing_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the left by a specified amount, n, saturating the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the << shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0x76543210FEDCBA99);

assert_eq!(n.rotate_left(32), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Shifts the bits to the right by a specified amount, n, saturating the truncated bits to the beginning of the resulting integer.

Please note this isn’t the same operation as the >> shifting operator!

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i64> = Saturating(0x0123456789ABCDEF);
let m: Saturating<i64> = Saturating(-0xFEDCBA987654322);

assert_eq!(n.rotate_right(4), m);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the byte order of the integer.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n: Saturating<i16> = Saturating(0b0000000_01010101);
assert_eq!(n, Saturating(85));

let m = n.swap_bytes();

assert_eq!(m, Saturating(0b01010101_00000000));
assert_eq!(m, Saturating(21760));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Reverses the bit pattern of the integer.

Examples

Please note that this example is shared between integer types. Which explains why i16 is used here.

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0b0000000_01010101i16);
assert_eq!(n, Saturating(85));

let m = n.reverse_bits();

assert_eq!(m.0 as u16, 0b10101010_00000000);
assert_eq!(m, Saturating(-22016));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai128);

if cfg!(target_endian = "big") {
    assert_eq!(<Saturating<i128>>::from_be(n), n)
} else {
    assert_eq!(<Saturating<i128>>::from_be(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai128);

if cfg!(target_endian = "little") {
    assert_eq!(<Saturating<i128>>::from_le(n), n)
} else {
    assert_eq!(<Saturating<i128>>::from_le(n), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai128);

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Converts self to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(0x1Ai128);

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}
🔬This is a nightly-only experimental API. (saturating_int_impl)

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i128).pow(4), Saturating(81));

Results that are too large are saturated:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(3i8).pow(5), Saturating(127));
assert_eq!(Saturating(3i8).pow(6), Saturating(127));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(isize::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100isize).abs(), Saturating(100));
assert_eq!(Saturating(-100isize).abs(), Saturating(100));
assert_eq!(Saturating(isize::MIN).abs(), Saturating((isize::MIN + 1).abs()));
assert_eq!(Saturating(isize::MIN).abs(), Saturating(isize::MIN.saturating_abs()));
assert_eq!(Saturating(isize::MIN).abs(), Saturating(isize::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10isize).signum(), Saturating(1));
assert_eq!(Saturating(0isize).signum(), Saturating(0));
assert_eq!(Saturating(-10isize).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10isize).is_positive());
assert!(!Saturating(-10isize).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10isize).is_negative());
assert!(!Saturating(10isize).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(i8::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100i8).abs(), Saturating(100));
assert_eq!(Saturating(-100i8).abs(), Saturating(100));
assert_eq!(Saturating(i8::MIN).abs(), Saturating((i8::MIN + 1).abs()));
assert_eq!(Saturating(i8::MIN).abs(), Saturating(i8::MIN.saturating_abs()));
assert_eq!(Saturating(i8::MIN).abs(), Saturating(i8::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10i8).signum(), Saturating(1));
assert_eq!(Saturating(0i8).signum(), Saturating(0));
assert_eq!(Saturating(-10i8).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10i8).is_positive());
assert!(!Saturating(-10i8).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10i8).is_negative());
assert!(!Saturating(10i8).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(i16::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100i16).abs(), Saturating(100));
assert_eq!(Saturating(-100i16).abs(), Saturating(100));
assert_eq!(Saturating(i16::MIN).abs(), Saturating((i16::MIN + 1).abs()));
assert_eq!(Saturating(i16::MIN).abs(), Saturating(i16::MIN.saturating_abs()));
assert_eq!(Saturating(i16::MIN).abs(), Saturating(i16::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10i16).signum(), Saturating(1));
assert_eq!(Saturating(0i16).signum(), Saturating(0));
assert_eq!(Saturating(-10i16).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10i16).is_positive());
assert!(!Saturating(-10i16).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10i16).is_negative());
assert!(!Saturating(10i16).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(i32::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100i32).abs(), Saturating(100));
assert_eq!(Saturating(-100i32).abs(), Saturating(100));
assert_eq!(Saturating(i32::MIN).abs(), Saturating((i32::MIN + 1).abs()));
assert_eq!(Saturating(i32::MIN).abs(), Saturating(i32::MIN.saturating_abs()));
assert_eq!(Saturating(i32::MIN).abs(), Saturating(i32::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10i32).signum(), Saturating(1));
assert_eq!(Saturating(0i32).signum(), Saturating(0));
assert_eq!(Saturating(-10i32).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10i32).is_positive());
assert!(!Saturating(-10i32).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10i32).is_negative());
assert!(!Saturating(10i32).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(i64::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100i64).abs(), Saturating(100));
assert_eq!(Saturating(-100i64).abs(), Saturating(100));
assert_eq!(Saturating(i64::MIN).abs(), Saturating((i64::MIN + 1).abs()));
assert_eq!(Saturating(i64::MIN).abs(), Saturating(i64::MIN.saturating_abs()));
assert_eq!(Saturating(i64::MIN).abs(), Saturating(i64::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10i64).signum(), Saturating(1));
assert_eq!(Saturating(0i64).signum(), Saturating(0));
assert_eq!(Saturating(-10i64).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10i64).is_positive());
assert!(!Saturating(-10i64).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10i64).is_negative());
assert!(!Saturating(10i64).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(i128::MAX >> 2);

assert_eq!(n.leading_zeros(), 3);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(100i128).abs(), Saturating(100));
assert_eq!(Saturating(-100i128).abs(), Saturating(100));
assert_eq!(Saturating(i128::MIN).abs(), Saturating((i128::MIN + 1).abs()));
assert_eq!(Saturating(i128::MIN).abs(), Saturating(i128::MIN.saturating_abs()));
assert_eq!(Saturating(i128::MIN).abs(), Saturating(i128::MAX));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative
Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(10i128).signum(), Saturating(1));
assert_eq!(Saturating(0i128).signum(), Saturating(0));
assert_eq!(Saturating(-10i128).signum(), Saturating(-1));
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(10i128).is_positive());
assert!(!Saturating(-10i128).is_positive());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(-10i128).is_negative());
assert!(!Saturating(10i128).is_negative());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(usize::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16usize).is_power_of_two());
assert!(!Saturating(10usize).is_power_of_two());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(u8::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16u8).is_power_of_two());
assert!(!Saturating(10u8).is_power_of_two());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(u16::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16u16).is_power_of_two());
assert!(!Saturating(10u16).is_power_of_two());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(u32::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16u32).is_power_of_two());
assert!(!Saturating(10u32).is_power_of_two());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(u64::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16u64).is_power_of_two());
assert!(!Saturating(10u64).is_power_of_two());
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

let n = Saturating(u128::MAX >> 2);

assert_eq!(n.leading_zeros(), 2);
🔬This is a nightly-only experimental API. (saturating_int_impl)

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert!(Saturating(16u128).is_power_of_two());
assert!(!Saturating(10u128).is_power_of_two());

Trait Implementations§

The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Performs the += operation. Read more
Formats the value using the given formatter.
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
Performs the &= operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
Performs the |= operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Performs the ^= operation. Read more
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Formats the value using the given formatter. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2i128), Saturating(5i128) / Saturating(2));
assert_eq!(Saturating(i128::MAX), Saturating(i128::MAX) / Saturating(1));
assert_eq!(Saturating(i128::MIN), Saturating(i128::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0i128) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2i16), Saturating(5i16) / Saturating(2));
assert_eq!(Saturating(i16::MAX), Saturating(i16::MAX) / Saturating(1));
assert_eq!(Saturating(i16::MIN), Saturating(i16::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0i16) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2i32), Saturating(5i32) / Saturating(2));
assert_eq!(Saturating(i32::MAX), Saturating(i32::MAX) / Saturating(1));
assert_eq!(Saturating(i32::MIN), Saturating(i32::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0i32) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2i64), Saturating(5i64) / Saturating(2));
assert_eq!(Saturating(i64::MAX), Saturating(i64::MAX) / Saturating(1));
assert_eq!(Saturating(i64::MIN), Saturating(i64::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0i64) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2i8), Saturating(5i8) / Saturating(2));
assert_eq!(Saturating(i8::MAX), Saturating(i8::MAX) / Saturating(1));
assert_eq!(Saturating(i8::MIN), Saturating(i8::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0i8) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2isize), Saturating(5isize) / Saturating(2));
assert_eq!(Saturating(isize::MAX), Saturating(isize::MAX) / Saturating(1));
assert_eq!(Saturating(isize::MIN), Saturating(isize::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0isize) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2u128), Saturating(5u128) / Saturating(2));
assert_eq!(Saturating(u128::MAX), Saturating(u128::MAX) / Saturating(1));
assert_eq!(Saturating(u128::MIN), Saturating(u128::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0u128) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2u16), Saturating(5u16) / Saturating(2));
assert_eq!(Saturating(u16::MAX), Saturating(u16::MAX) / Saturating(1));
assert_eq!(Saturating(u16::MIN), Saturating(u16::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0u16) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2u32), Saturating(5u32) / Saturating(2));
assert_eq!(Saturating(u32::MAX), Saturating(u32::MAX) / Saturating(1));
assert_eq!(Saturating(u32::MIN), Saturating(u32::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0u32) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2u64), Saturating(5u64) / Saturating(2));
assert_eq!(Saturating(u64::MAX), Saturating(u64::MAX) / Saturating(1));
assert_eq!(Saturating(u64::MIN), Saturating(u64::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0u64) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2u8), Saturating(5u8) / Saturating(2));
assert_eq!(Saturating(u8::MAX), Saturating(u8::MAX) / Saturating(1));
assert_eq!(Saturating(u8::MIN), Saturating(u8::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0u8) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more

Examples

Basic usage:

#![feature(saturating_int_impl)]
use std::num::Saturating;

assert_eq!(Saturating(2usize), Saturating(5usize) / Saturating(2));
assert_eq!(Saturating(usize::MAX), Saturating(usize::MAX) / Saturating(1));
assert_eq!(Saturating(usize::MIN), Saturating(usize::MIN) / Saturating(1));
#![feature(saturating_int_impl)]
use std::num::Saturating;

let _ = Saturating(0usize) / Saturating(0);
The resulting type after applying the / operator.
Performs the / operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Performs the /= operation. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Formats the value using the given formatter.
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
Performs the *= operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the - operator.
Performs the unary - operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
The resulting type after applying the ! operator.
Performs the unary ! operation. Read more
Formats the value using the given formatter.
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
Performs the %= operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
The resulting type after applying the << operator.
Performs the << operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
Performs the <<= operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
The resulting type after applying the >> operator.
Performs the >> operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
Performs the >>= operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Performs the -= operation. Read more
Formats the value using the given formatter.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.