1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use blake2s_simd::Params as Blake2s;
use crate::drgraph::Graph;
use crate::error::Result;
use crate::fr32::bytes_into_fr_repr_safe;
use crate::hasher::{Domain, Hasher};
use crate::merkle::MerkleTree;
use crate::util::{data_at_node, data_at_node_offset, NODE_SIZE};
pub fn encode<'a, H, G>(
graph: &'a G,
sloth_iter: usize,
replica_id: &'a H::Domain,
data: &'a mut [u8],
) -> Result<()>
where
H: Hasher,
G: Graph<H>,
{
let mut parents = vec![0; graph.degree()];
for n in 0..graph.size() {
let node = if graph.forward() {
n
} else {
(graph.size() - n) - 1
};
graph.parents(node, &mut parents);
let key = create_key::<H>(replica_id, node, &parents, data)?;
let start = data_at_node_offset(node);
let end = start + NODE_SIZE;
let node_data = H::Domain::try_from_bytes(&data[start..end])?;
let encoded = H::sloth_encode(&key, &node_data, sloth_iter);
encoded.write_bytes(&mut data[start..end])?;
}
Ok(())
}
pub fn decode<'a, H, G>(
graph: &'a G,
sloth_iter: usize,
replica_id: &'a H::Domain,
data: &'a [u8],
) -> Result<Vec<u8>>
where
H: Hasher,
G: Graph<H>,
{
(0..graph.size()).fold(Ok(Vec::with_capacity(data.len())), |acc, i| {
acc.and_then(|mut acc| {
acc.extend(decode_block(graph, sloth_iter, replica_id, data, i)?.into_bytes());
Ok(acc)
})
})
}
pub fn decode_block<'a, H, G>(
graph: &'a G,
sloth_iter: usize,
replica_id: &'a H::Domain,
data: &'a [u8],
v: usize,
) -> Result<H::Domain>
where
H: Hasher,
G: Graph<H>,
{
let mut parents = vec![0; graph.degree()];
graph.parents(v, &mut parents);
let key = create_key::<H>(replica_id, v, &parents, &data)?;
let node_data = H::Domain::try_from_bytes(&data_at_node(data, v)?)?;
Ok(H::sloth_decode(&key, &node_data, sloth_iter))
}
pub fn decode_domain_block<H>(
sloth_iter: usize,
replica_id: &H::Domain,
tree: &MerkleTree<H::Domain, H::Function>,
node: usize,
node_data: <H as Hasher>::Domain,
parents: &[usize],
) -> Result<H::Domain>
where
H: Hasher,
{
let key = create_key_from_tree::<H>(replica_id, node, parents, tree)?;
Ok(H::sloth_decode(&key, &node_data, sloth_iter))
}
pub fn create_key<H: Hasher>(
id: &H::Domain,
node: usize,
parents: &[usize],
data: &[u8],
) -> Result<H::Domain> {
let mut hasher = Blake2s::new().hash_length(NODE_SIZE).to_state();
hasher.update(id.as_ref());
if node != parents[0] {
for parent in parents.iter() {
let offset = data_at_node_offset(*parent);
hasher.update(&data[offset..offset + NODE_SIZE]);
}
}
let hash = hasher.finalize();
Ok(bytes_into_fr_repr_safe(hash.as_ref()).into())
}
pub fn create_key_from_tree<H: Hasher>(
id: &H::Domain,
node: usize,
parents: &[usize],
tree: &MerkleTree<H::Domain, H::Function>,
) -> Result<H::Domain> {
let mut hasher = Blake2s::new().hash_length(NODE_SIZE).to_state();
hasher.update(id.as_ref());
if node != parents[0] {
let mut scratch: [u8; NODE_SIZE] = [0; NODE_SIZE];
for parent in parents.iter() {
tree.read_into(*parent, &mut scratch);
hasher.update(&scratch);
}
}
let hash = hasher.finalize();
Ok(bytes_into_fr_repr_safe(hash.as_ref()).into())
}