1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use blake2b_simd::blake2b;
use std::mem;

pub const FEISTEL_ROUNDS: usize = 3;
// 3 rounds is an acceptable value for a pseudo-random permutation,
// see https://github.com/filecoin-project/rust-proofs/issues/425
// (and also https://en.wikipedia.org/wiki/Feistel_cipher#Theoretical_work).

pub type Index = u64;

pub type FeistelPrecomputed = (Index, Index, Index);

// Find the minimum number of even bits to represent `num_elements`
// within a `u32` maximum. Returns the left and right masks evenly
// distributed that together add up to that minimum number of bits.
pub fn precompute(num_elements: Index) -> FeistelPrecomputed {
    let mut next_pow4: Index = 4;
    let mut log4 = 1;
    while next_pow4 < num_elements {
        next_pow4 *= 4;
        log4 += 1;
    }

    let left_mask = ((1 << log4) - 1) << log4;
    let right_mask = (1 << log4) - 1;
    let half_bits = log4;

    (left_mask, right_mask, half_bits)
}

// Pseudo-randomly shuffle an input from a starting position to another
// one within the `[0, num_elements)` range using a `key` that will allow
// the reverse operation to take place.
pub fn permute(
    num_elements: Index,
    index: Index,
    keys: &[Index],
    precomputed: FeistelPrecomputed,
) -> Index {
    let mut u = encode(index, keys, precomputed);

    while u >= num_elements {
        u = encode(u, keys, precomputed)
    }
    // Since we are representing `num_elements` using an even number of bits,
    // that can encode many values above it, so keep repeating the operation
    // until we land in the permitted range.

    u
}

// Inverts the `permute` result to its starting value for the same `key`.
pub fn invert_permute(
    num_elements: Index,
    index: Index,
    keys: &[Index],
    precomputed: FeistelPrecomputed,
) -> Index {
    let mut u = decode(index, keys, precomputed);

    while u >= num_elements {
        u = decode(u, keys, precomputed);
    }
    u
}

/// common_setup performs common calculations on inputs shared by encode and decode.
/// Decompress the `precomputed` part of the algorithm into the initial `left` and
/// `right` pieces `(L_0, R_0)` with the `right_mask` and `half_bits` to manipulate
/// them.
fn common_setup(index: Index, precomputed: FeistelPrecomputed) -> (Index, Index, Index, Index) {
    let (left_mask, right_mask, half_bits) = precomputed;

    let left = (index & left_mask) >> half_bits;
    let right = index & right_mask;

    (left, right, right_mask, half_bits)
}

fn encode(index: Index, keys: &[Index], precomputed: FeistelPrecomputed) -> Index {
    let (mut left, mut right, right_mask, half_bits) = common_setup(index, precomputed);

    for key in keys.iter().take(FEISTEL_ROUNDS) {
        let (l, r) = (right, left ^ feistel(right, *key, right_mask));
        left = l;
        right = r;
    }

    (left << half_bits) | right
}

fn decode(index: Index, keys: &[Index], precomputed: FeistelPrecomputed) -> Index {
    let (mut left, mut right, right_mask, half_bits) = common_setup(index, precomputed);

    for i in (0..FEISTEL_ROUNDS).rev() {
        let (l, r) = ((right ^ feistel(left, keys[i], right_mask)), left);
        left = l;
        right = r;
    }

    (left << half_bits) | right
}

const HALF_FEISTEL_BYTES: usize = mem::size_of::<Index>();
const FEISTEL_BYTES: usize = 2 * HALF_FEISTEL_BYTES;

// Round function of the Feistel network: `F(Ri, Ki)`. Joins the `right`
// piece and the `key`, hashes it and returns the lower `u32` part of
// the hash filtered trough the `right_mask`.
fn feistel(right: Index, key: Index, right_mask: Index) -> Index {
    let mut data: [u8; FEISTEL_BYTES] = [0; FEISTEL_BYTES];

    // So ugly, but the price of (relative) speed.
    let r = if FEISTEL_BYTES <= 8 {
        data[0] = (right >> 24) as u8;
        data[1] = (right >> 16) as u8;
        data[2] = (right >> 8) as u8;
        data[3] = right as u8;

        data[4] = (key >> 24) as u8;
        data[5] = (key >> 16) as u8;
        data[6] = (key >> 8) as u8;
        data[7] = key as u8;

        let raw = blake2b(&data);
        let hash = raw.as_bytes();

        Index::from(hash[0]) << 24
            | Index::from(hash[1]) << 16
            | Index::from(hash[2]) << 8
            | Index::from(hash[3])
    } else {
        data[0] = (right >> 56) as u8;
        data[1] = (right >> 48) as u8;
        data[2] = (right >> 40) as u8;
        data[3] = (right >> 32) as u8;
        data[4] = (right >> 24) as u8;
        data[5] = (right >> 16) as u8;
        data[6] = (right >> 8) as u8;
        data[7] = right as u8;

        data[8] = (key >> 56) as u8;
        data[9] = (key >> 48) as u8;
        data[10] = (key >> 40) as u8;
        data[11] = (key >> 32) as u8;
        data[12] = (key >> 24) as u8;
        data[13] = (key >> 16) as u8;
        data[14] = (key >> 8) as u8;
        data[15] = key as u8;

        let raw = blake2b(&data);
        let hash = raw.as_bytes();

        Index::from(hash[0]) << 56
            | Index::from(hash[1]) << 48
            | Index::from(hash[2]) << 40
            | Index::from(hash[3]) << 32
            | Index::from(hash[4]) << 24
            | Index::from(hash[5]) << 16
            | Index::from(hash[6]) << 8
            | Index::from(hash[7])
    };

    r & right_mask
}

#[cfg(test)]
mod tests {
    use super::*;

    // Some sample n-values which are not powers of four and also don't coincidentally happen to
    // encode/decode correctly.
    const BAD_NS: &[Index] = &[5, 6, 8, 12, 17]; //
                                                 //
    fn encode_decode(n: Index, expect_success: bool) {
        let mut failed = false;
        let precomputed = precompute(n);
        for i in 0..n {
            let p = encode(i, &[1, 2, 3, 4], precomputed);
            let v = decode(p, &[1, 2, 3, 4], precomputed);
            let equal = i == v;
            let in_range = p <= n;
            if expect_success {
                assert!(equal, "failed to permute (n = {})", n);
                assert!(in_range, "output number is too big (n = {})", n);
            } else {
                if !equal || !in_range {
                    failed = true;
                }
            }
        }
        if !expect_success {
            assert!(failed, "expected failure (n = {})", n);
        }
    }

    #[test]
    fn test_feistel_power_of_4() {
        // Our implementation is guaranteed to produce a permutation when input size (number of elements)
        // is a power of our.
        let mut n = 1;

        // Powers of 4 always succeed.
        for _ in 0..4 {
            n *= 4;
            encode_decode(n, true);
        }

        // Some non-power-of 4 also succeed, but here is a selection of examples values showing
        // that this is not guaranteed.
        for i in BAD_NS.iter() {
            encode_decode(*i, false);
        }
    }

    #[test]
    fn test_feistel_on_arbitrary_set() {
        for n in BAD_NS.iter() {
            let precomputed = precompute(*n as Index);
            for i in 0..*n {
                let p = permute(*n, i, &[1, 2, 3, 4], precomputed);
                let v = invert_permute(*n, p, &[1, 2, 3, 4], precomputed);
                // Since every element in the set is reversibly mapped to another element also in the set,
                // this is indeed a permutation.
                assert_eq!(i, v, "failed to permute");
                assert!(p <= *n, "output number is too big");
            }
        }
    }
}