1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
ix!();

use crate::{
    SampleAndHoldOscillator,
};

impl OscillatorProcess for SampleAndHoldOscillator {

    ///defaults: float drift = 0.0, bool stereo = false, bool fm = false, float self.fm_depth = 0.0
    fn process_block(&mut self, cfg: OscillatorProcessBlockCfg)
    {
        let stereo = cfg.stereo;
        let pitch0 = cfg.pitch;
        let drift  = cfg.drift;
        let depth  = cfg.fm_depth;
        let fm     = cfg.fm;

        self.pitch = minf(148.0, pitch0);
        self.drift = drift;
        self.blitter.pitchmult_inv = maxd(
            1.0_f64, 
            self.srunit.dsamplerate_os()
            * (1.0 / 8.175798915) 
            * self.tuner.n2pinv::<f64,false>(self.pitch as f64)
        ) as f32;

        // This must be a real division, reciprocal-approximation is not precise enough
        self.blitter.pitchmult = 1.0 / self.blitter.pitchmult_inv;

        // if (fm) self.fm_depth.new_value(depth);
        self.update_lagvals::<false>();

        self.l_pw.process();
        self.l_shape.process();
        self.l_smooth.process();
        self.l_sub.process();
        self.l_sync.process();

        // self.hpf_coeff.process();
        // self.integrator_mult.process();

        if fm {

            for l in 0_usize..(self.blitter.n_unison as usize) {
                self.blitter.driftlfo[l] = drift_noise(self.blitter.driftlfo2[l]);
            }

            for s in 0..BLOCK_SIZE_OS {

                let master_osc: f32 = unsafe { *self.master_osc.add(s) };

                let fmmul: f32 = limit_range(1.0 + depth * master_osc, 0.1, 1.9);
                let a: f32 = self.blitter.pitchmult * fmmul;

                self.fm_delay = s as i32;

                for l in (0_usize..self.blitter.n_unison as usize).step_by(1) {

                    while self.blitter.oscstate[l] < a {

                        self.fm_mul_inv = rcp(fmmul);

                        self.convolute(
                            ConvolutionCfg{ voice: l, fm: true, stereo } 
                        );

                    }

                    self.blitter.oscstate[l] -= a;
                }
            }

        } else {

            let a: f32 = (BLOCK_SIZE_OS as f32) * self.blitter.pitchmult;

            for l in 0_usize..(self.blitter.n_unison as usize) {

                self.blitter.driftlfo[l] = drift_noise(self.blitter.driftlfo2[l]);

                while (self.blitter.syncstate[l] < a) || (self.blitter.oscstate[l] < a)
                {
                    self.convolute(
                        ConvolutionCfg{ voice: l, fm: false, stereo }
                    );
                }

                self.blitter.oscstate[l] -= a;

                if self.l_sync.v > 0.0 {
                    self.blitter.syncstate[l] -= a;
                }
            }

        }

        let mut hpfblock = WetBlock1::<BLOCK_SIZE_OS>::default();

        unsafe {
            self.li_hpf.store_block(hpfblock.buf.as_mut_ptr(), BLOCK_SIZE_OS_QUAD);
        }

        unsafe {
            let mdc: __m128 = _mm_load_ss(&self.dc);
            let mut oa: __m128 = _mm_load_ss(&self.blitter.out_attenuation);
            oa = _mm_mul_ss(oa, _mm_load_ss(&self.blitter.pitchmult));

            for k in (0..BLOCK_SIZE_OS).step_by(1) 
            {
                let hpf: __m128 = _mm_load_ss(&hpfblock.buf[k]);
                let mut ob: __m128 = _mm_load_ss(&self.blitter.oscbuffer_l[(self.blitter.bufpos + (k as i32)) as usize]);
                let mut a: __m128 = _mm_mul_ss(self.blitter.osc_out_l, hpf);

                ob = _mm_sub_ss(ob, _mm_mul_ss(mdc, oa));
                self.blitter.osc_out_l = _mm_add_ss(a, ob);

                _mm_store_ss(&mut self.out.l[k], self.blitter.osc_out_l);

                if stereo {

                    ob = _mm_load_ss(&self.blitter.oscbuffer_r[(self.blitter.bufpos + (k as i32)) as usize]);
                    a = _mm_mul_ss(self.blitter.osc_out_r, hpf);
                    ob = _mm_sub_ss(ob, _mm_mul_ss(mdc, oa));

                    self.blitter.osc_out_r = _mm_add_ss(a, ob);
                    _mm_store_ss(&mut self.out.r[k], self.blitter.osc_out_r);
                }
            }
            _mm_store_ss(&mut self.dc, mdc);
        }

        self.clear_blocks(stereo);

        self.blitter.bufpos = (self.blitter.bufpos + BLOCK_SIZE_OS as i32) & (OB_LENGTH as i32 - 1);

        // each block overlap FIR_IPOL_N samples into the next (due to impulses not being wrapped around
        // the block edges copy the overlapping samples to the new block position

        // only needed if the new self.blitter.bufpos == 0
        if self.blitter.bufpos == 0  {

            let mut overlap_l = unsafe { [z128![]; FIR_IPOL_N >> 2] };
            let mut overlap_r = unsafe { [z128![]; FIR_IPOL_N >> 2] };

            for k in (0..FIR_IPOL_N).step_by(4) 
            {
                unsafe {

                    overlap_l[k >> 2] = _mm_load_ps(&self.blitter.oscbuffer_l[OB_LENGTH + k]);
                    _mm_store_ps(&mut self.blitter.oscbuffer_l[k], overlap_l[k >> 2]);
                    _mm_store_ps(&mut self.blitter.oscbuffer_l[OB_LENGTH + k], z128![]);

                    if stereo {

                        overlap_r[k >> 2] = _mm_load_ps(&self.blitter.oscbuffer_r[OB_LENGTH + k]);
                        _mm_store_ps(&mut self.blitter.oscbuffer_r[k], overlap_r[k >> 2]);
                        _mm_store_ps(&mut self.blitter.oscbuffer_r[OB_LENGTH + k], z128![]);
                    }
                }

            }
        }
    }
}