1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
ix!();
use crate::*;
impl Convolute for SampleAndHoldOscillator {
fn convolute(&mut self, cfg: ConvolutionCfg) {
let voice: usize = cfg.voice;
let stereo: bool = cfg.stereo;
let fm: bool = cfg.fm;
let mut detune: f32 = self.drift * self.blitter.driftlfo[voice];
if self.blitter.n_unison > 1 {
detune += self.pvalf(SampleAndHoldOscillatorParam::UniCount) *
(self.blitter.detune_bias * (voice as f32) + self.blitter.detune_offset);
}
let p24: f32 = (1 << 24) as f32;
let mut ipos: i32 = match fm {
true => ((p24 as f32) * (self.blitter.oscstate[voice] * self.blitter.pitchmult_inv * self.fm_mul_inv)) as i32,
false => ((p24 as f32) * (self.blitter.oscstate[voice] * self.blitter.pitchmult_inv)) as i32,
};
let mut invertcorrelation: f32 = 1.0;
if self.blitter.syncstate[voice] < self.blitter.oscstate[voice] {
ipos = (p24 as f32 * (self.blitter.syncstate[voice] * self.blitter.pitchmult_inv)) as i32;
let t: f32 = self.tuner.n2pinv_tuningctr(detune as f64) as f32;
if self.blitter.state[voice] == 1 {
invertcorrelation = -1.0;
}
self.blitter.state[voice] = 0;
self.blitter.oscstate[voice] = self.blitter.syncstate[voice];
self.blitter.syncstate[voice] += t;
}
let delay: u32 = match fm {
true => self.fm_delay as u32,
false => ((ipos >> 24) & 0x3f) as u32,
};
let m: i32 = (((ipos >> 16) & 0xff) as i32) * ((FIR_IPOL_N << 1) as i32);
let lipolui16: i32 = ipos & 0xffff;
let lipol128 = unsafe {
let mut lipol128: __m128 = z128![];
lipol128 = _mm_cvtsi32_ss(lipol128, lipolui16);
lipol128 = _mm_shuffle_ps(lipol128, lipol128, _MM_SHUFFLE(0, 0, 0, 0));
lipol128
};
let t: f32 = {
if self.params[SampleAndHoldOscillatorParam::UniCount].absolute {
let t = self.tuner.n2pinv::<f32,true>(
detune * self.tuner.n2pinv::<f32,true>( self.pitch ) *
16.0 / 0.9443
);
maxf(0.1,t)
} else {
self.tuner.n2pinv_tuningctr((detune as f64) + self.l_sync.v) as f32
}
};
let mut g: f32;
let mut g_r: f32 = 0.0;
let wf: f32 = (self.l_shape.v * 0.8 * (invertcorrelation as f64)) as f32;
let wfabs: f32 = wf.abs();
let rand11: f32 = rand11();
let mut randt: f32 = rand11 * (1.0 - wfabs) - wf * self.last_level[voice];
randt *= rcp(1.0 - wfabs);
randt = minf(0.5, maxf(-0.5, randt));
if self.blitter.state[voice] == 0 {
self.pwidth[voice] = self.l_pw.v as f32;
}
g = randt - self.last_level[voice];
self.last_level[voice] = randt;
g *= self.blitter.out_attenuation;
if stereo {
g_r = g * self.blitter.pan_r[voice];
g *= self.blitter.pan_l[voice];
}
if stereo {
unsafe {
let mut g128_l: __m128 = _mm_load_ss(&g);
g128_l = _mm_shuffle_ps(g128_l, g128_l, _MM_SHUFFLE(0, 0, 0, 0));
let mut g128_r: __m128 = _mm_load_ss(&g_r);
g128_r = _mm_shuffle_ps(g128_r, g128_r, _MM_SHUFFLE(0, 0, 0, 0));
for k in (0..FIR_IPOL_N).step_by(4) {
let idx: usize = (self.blitter.bufpos as usize) + (k as usize) + (delay as usize);
let sincidx: usize = m as usize + k;
let sincidx2: usize = (m as usize + k) + FIR_IPOL_N;
let obf_l = &mut self.blitter.oscbuffer_l[idx];
let obf_r = &mut self.blitter.oscbuffer_r[idx];
let mut ob_l: __m128 = _mm_loadu_ps(obf_l);
let mut ob_r: __m128 = _mm_loadu_ps(obf_r);
let mut st: __m128 = _mm_load_ps(&mut self.tables.sinctable(sincidx) as *mut f32);
let mut so: __m128 = _mm_load_ps(&mut self.tables.sinctable(sincidx2) as *mut f32);
so = _mm_mul_ps(so, lipol128);
st = _mm_add_ps(st, so);
ob_l = _mm_add_ps(ob_l, _mm_mul_ps(st, g128_l));
_mm_storeu_ps(obf_l, ob_l);
ob_r = _mm_add_ps(ob_r, _mm_mul_ps(st, g128_r));
_mm_storeu_ps(obf_r, ob_r);
}
}
} else {
unsafe {
let mut g128: __m128 = _mm_load_ss(&g);
g128 = _mm_shuffle_ps(g128, g128, _MM_SHUFFLE(0, 0, 0, 0));
for k in (0..FIR_IPOL_N).step_by(4) {
let idx: usize = (self.blitter.bufpos as usize) + (k as usize) + (delay as usize);
let sincidx: usize = m as usize + k;
let sincidx2: usize = m as usize + k + FIR_IPOL_N;
let obf = &mut self.blitter.oscbuffer_l[idx];
let mut ob: __m128 = _mm_loadu_ps(obf);
let mut st: __m128 = _mm_load_ps(&mut self.tables.sinctable(sincidx) as *mut f32);
let mut so: __m128 = _mm_load_ps(&mut self.tables.sinctable(sincidx2) as *mut f32);
so = _mm_mul_ps(so, lipol128);
st = _mm_add_ps(st, so);
st = _mm_mul_ps(st, g128);
ob = _mm_add_ps(ob, st);
_mm_storeu_ps(obf, ob);
}
}
}
if (self.blitter.state[voice] & 1) != 0 {
self.blitter.rate[voice] = t * (1.0 - self.pwidth[voice]);
} else {
self.blitter.rate[voice] = t * self.pwidth[voice];
}
self.blitter.oscstate[voice] += self.blitter.rate[voice];
self.blitter.oscstate[voice] = maxf(0.0, self.blitter.oscstate[voice]);
self.blitter.state[voice] = (self.blitter.state[voice] + 1) & 1;
}
}