Expand description

This crate provides two procedural macros, #[derive(Arbitrary)] and #[proptest].

Each of these macros is an alternative to the following proptest’s official macros.

The macros provided by this crate have the following advantages over the proptest’s official macros.

  • Supports higher-order strategies. (#[derive(Arbitrary)] and #[proptest])
  • Code formatting is not disabled. (#[proptest])

However, the syntax of this crate’s macros are not compatible with the syntax of the official macros.

Install

Add this to your Cargo.toml:

[dependencies]
test-strategy = "0.2.1"
proptest = "1.0.0"

Example

You can use #[derive(Arbitrary)] to automatically implement proptest’s Arbitrary trait.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInputStruct {
    x: u32,

    #[strategy(1..10u32)]
    y: u32,

    #[strategy(0..#y)]
    z: u32,
}

#[derive(Arbitrary, Debug)]
enum TestInputEnum {
    A,
    B,
    #[weight(3)]
    C,
    X(u32),
    Y(#[strategy(0..10u32)] u32),
}

You can define a property test by adding #[proptest] to the function.

use test_strategy::proptest;

#[proptest]
fn my_test(_x: u32, #[strategy(1..10u32)] y: u32, #[strategy(0..#y)] z: u32) {
    assert!(1 <= y && y < 10);
    assert!(z <= y);
}

Helper attributes

Helper attributes can be written in the following positions.

attributefunctionstructenumvariantfieldfunction parameter
#[strategy]
#[any]
#[weight]
#[filter]
#[by_ref]
#[arbitrary(args = T)]
#[arbitrary(bound(...))]
#[arbitrary(dump)]

#[derive(Arbitrary)]

You can implement proptest::arbitrary::Arbitrary automatically by adding #[derive(Arbitrary)] to struct or enum declaration.

By default, all fields are set using the strategy obtained by proptest::arbitrary::any().

So the following two codes are equivalent.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    x: u32,
    y: u32,
}
use proptest::{
    arbitrary::{any, Arbitrary},
    strategy::{BoxedStrategy, Strategy},
};

#[derive(Debug)]
struct TestInput {
    x: u32,
    y: u32,
}
impl Arbitrary for TestInput {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
        let x = any::<u32>();
        let y = any::<u32>();
        (x, y).prop_map(|(x, y)| Self { x, y }).boxed()
    }
}

#[strategy]

You can specify a strategy to generate values for the field by adding #[strategy(...)] to the field.

In the following example, the value of field x will be less than 20.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    #[strategy(0..20u32)]
    x: u32,
}

In #[strategy], the values of other fields can be used by following # to the name of the field.

In the following example, the value of y is less than or equal to x.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    x: u32,
    #[strategy(0..=#x)]
    y: u32,
}

#[any]

Instead of writing #[strategy(any_with::<Type>(expr))], you can write #[any(expr)].

use proptest::collection::size_range;
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug, PartialEq)]
struct TestInput {
    #[any(size_range(0..16).lift())]
    x: Vec<u16>,
}

Instead of writing an expression to be passed to any_with, you can write only the value of the field to be changed from the default value.

Therefore, the following TestInputA, TestInputB and TestInputC are equivalent.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInputA {
    #[any(InnerArgs { upper : 20, ..InnerArgs::default() })]
    a: Inner,
}
#[derive(Arbitrary, Debug)]
struct TestInputB {
    #[any(InnerArgs::default(), upper = 20)]
    a: Inner,
}
#[derive(Arbitrary, Debug)]
struct TestInputC {
    #[any(upper = 20)]
    a: Inner,
}

#[derive(Default)]
struct InnerArgs {
    lower: i32,
    upper: i32,
}

#[derive(Arbitrary, Debug)]
#[arbitrary(args = InnerArgs)]
struct Inner {
    #[strategy(args.lower..args.upper)]
    x: i32,
}

#[weight]

By default, all variants appear with equal probability.

You can add #[weight] to the variant to change the probability of the variant appearing.

In the following example, TestInput::B is twice as likely to appear as TestInput::A.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
enum TestInput {
    A,

    #[weight(2)]
    B,
}

If you add #[weight(0)] to a variant, the variant does not appear, so you can use a type in that variant that cannot be used as Arbitrary.

use test_strategy::Arbitrary;

#[derive(Debug)]
struct NotArbitrary;

#[derive(Arbitrary, Debug)]
enum TestInput {
    A,

    #[allow(dead_code)]
    #[weight(0)] // Removing this `#[weight(0)]` will cause a compile error.
    B(NotArbitrary),
}

#[filter]

By adding #[filter] , you can limit the values generated.

In the following examples, x is an even number.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    #[filter(#x % 2 == 0)]
    x: u32,
}

You can also use multiple variables in a predicate.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
#[filter((#x + #y) % 2 == 0)]
struct TestInput {
    x: u32,
    y: u32,
}

You can use the value of a structure or enum in the filter by using #self.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
#[filter((#self.x + #self.y) % 2 == 0)]
struct TestInput {
    x: u32,
    y: u32,
}

If the argument of the #[filter] does not contain a variable marked with #, it is treated as a predicate function.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    #[filter(is_even)]
    x: u32,
}
fn is_even(x: &u32) -> bool {
    x % 2 == 0
}
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
#[filter(x_is_even)]
struct TestInput {
    x: u32,
}
fn x_is_even(input: &TestInput) -> bool {
    input.x % 2 == 0
}

You can specify a filter name by passing two arguments to #[filter].

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    #[filter("filter name", #x % 2 == 0)]
    x: u32,
}

#[by_ref]

By default, if you use a variable with #[strategy], #[any] or #[filter] with # attached to it, the cloned value is set.

Adding #[by_ref] to the field makes it use the reference instead of the cloned value.

use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInput {
    #[by_ref]
    #[strategy(1..10u32)]
    x: u32,

    #[strategy(0..*#x)]
    y: u32,
}

#[arbitrary]

#[arbitrary(args = T)]

Specifies the type of Arbitrary::Parameters.

You can use the value of this type in #[strategy], #[any], or #[filter] with the variable name args.

use test_strategy::Arbitrary;

#[derive(Debug, Default)]
struct TestInputArgs {
    x_max: u32,
}

#[derive(Arbitrary, Debug)]
#[arbitrary(args = TestInputArgs)]
struct TestInput {
    #[strategy(0..=args.x_max)]
    x: u32,
}

#[arbitrary(bound(T1, T2, ..))]

By default, if the type of field for which #[strategy] is not specified contains a generic parameter, that type is set to trait bounds.

Therefore, the following TestInputA and TestInputB are equivalent.

use proptest::{
    arbitrary::any, arbitrary::Arbitrary, strategy::BoxedStrategy, strategy::Strategy,
};
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug)]
struct TestInputA<T> {
    x: T,
}

#[derive(Debug)]
struct TestInputB<T> {
    x: T,
}
impl<T: Arbitrary + 'static> Arbitrary for TestInputB<T> {
    type Parameters = ();
    type Strategy = BoxedStrategy<Self>;

    fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
        any::<T>().prop_map(|x| Self { x }).boxed()
    }
}

Types of fields with #[strategy] do not set trait bounds automatically, so you need to set trait bound manually with #[arbitrary(bound(T))].

use proptest::arbitrary::any_with;
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug, PartialEq)]
#[arbitrary(bound(T))]
struct TestInput<T> {
    #[strategy(any_with::<T>(Default::default()))]
    x: T,
}

You can also specify where predicate instead of type.

use proptest::arbitrary::{any_with, Arbitrary};
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug, PartialEq)]
#[arbitrary(bound(T : Arbitrary + 'static))]
struct TestInput<T> {
    #[strategy(any_with::<T>(Default::default()))]
    x: T,
}

.. means automatically generated trait bounds.

The following example uses a manually specified trait bounds in addition to the automatically generated trait bounds.

use proptest::arbitrary::any_with;
use test_strategy::Arbitrary;

#[derive(Arbitrary, Debug, PartialEq)]
#[arbitrary(bound(T1, ..))]
struct TestInput<T1, T2> {
    #[strategy(any_with::<T1>(Default::default()))]
    x: T1,

    y: T2,
}

#[arbitrary(dump)]

Causes a compile error and outputs the code generated by #[derive(Arbitrary)] as an error message.

#[proptest]

#[proptest] is the attribute used instead of #[test] when defining a property test.

The following example defines a test that takes a variety of integers as input.

use test_strategy::proptest;

#[proptest]
fn my_test(_input: i32) {
    // ...
}

You can add #[strategy], #[any], #[filter], #[by_ref] to the parameter of the function with # [proptest].

use test_strategy::proptest;

#[proptest]
fn my_test2(#[strategy(10..20)] _input: i32) {
    // ...
}

You can change the configuration of a property test by setting the argument of #[proptest] attribute to a value of proptest::prelude::ProptestConfig type.

use proptest::prelude::ProptestConfig;
use test_strategy::proptest;


#[proptest(ProptestConfig { cases : 1000, ..ProptestConfig::default() })]
fn my_test_with_config(_input: i32) {
    // ...
}

As with #[any], you can also set only the value of the field to be changed from the default value.

The example below is equivalent to the one above.

use proptest::prelude::ProptestConfig;
use test_strategy::proptest;

#[proptest(ProptestConfig::default(), cases = 1000)]
fn my_test_with_config_2(_input: i32) {
    // ...
}

#[proptest(cases = 1000)]
fn my_test_with_config_3(_input: i32) {
    // ...
}

#[proptest_dump]

You can add #[proptest_dump] to #[proptest] and output the code generated by #[proptest] as an compile error message.

#[proptest]
#[proptest_dump]
fn my_test(_input: i32) {
    // ...
}

Attribute Macros

Derive Macros