tfhe_fft/
ordered.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! Ordered FFT module.
//!
//! This FFT is currently based on the Stockham algorithm, and was ported from the
//! [OTFFT](http://wwwa.pikara.ne.jp/okojisan/otfft-en/) C++ library by Takuya OKAHISA.
//!
//! This module computes the forward or inverse FFT in standard ordering.
//! This means that given a buffer of complex numbers $[x_0, \dots, x_{n-1}]$,
//! the forward FFT $[X_0, \dots, X_{n-1}]$ is given by
//! $$X_p = \sum_{q = 0}^{n-1} \exp\left(-\frac{i 2\pi pq}{n}\right),$$
//! and the inverse FFT $[Y_0, \dots, Y_{n-1}]$ is given by
//! $$Y_p = \sum_{q = 0}^{n-1} \exp\left(\frac{i 2\pi pq}{n}\right).$$

use crate::{dif2::split_2, *};
use aligned_vec::{avec, ABox, CACHELINE_ALIGN};

#[cfg(feature = "std")]
use core::time::Duration;
#[cfg(feature = "std")]
use dyn_stack::{GlobalPodBuffer, ReborrowMut};
use dyn_stack::{PodStack, SizeOverflow, StackReq};

/// Internal FFT algorithm.
///
/// The FFT can use a decimation-in-frequency (DIF) or decimation-in-time (DIT) approach.
/// And the FFT radix can be any of 2, 4, 8, 16.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[non_exhaustive]
pub enum FftAlgo {
    /// Decimation in frequency with radix 2
    Dif2,
    /// Decimation in time with radix 2
    Dit2,
    /// Decimation in frequency with radix 4
    Dif4,
    /// Decimation in time with radix 4
    Dit4,
    /// Decimation in frequency with radix 8
    Dif8,
    /// Decimation in time with radix 8
    Dit8,
    /// Decimation in frequency with radix 16
    Dif16,
    /// Decimation in time with radix 16
    Dit16,
}

/// Method for selecting the ordered FFT plan.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[non_exhaustive]
pub enum Method {
    /// Select the FFT plan by manually providing the underlying algorithm.
    UserProvided(FftAlgo),
    /// Select the FFT plan by measuring the running time of all the possible plans and selecting
    /// the fastest one. The provided duration specifies how long the benchmark of each plan should
    /// last.
    #[cfg(feature = "std")]
    #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
    Measure(Duration),
}

#[cfg(feature = "std")]
fn measure_n_runs(
    n_runs: u128,
    algo: FftAlgo,
    buf: &mut [c64],
    twiddles_init: &[c64],
    twiddles: &[c64],
    stack: PodStack,
) -> Duration {
    let n = buf.len();
    let (scratch, _) = stack.make_aligned_raw::<c64>(n, CACHELINE_ALIGN);
    let [fwd, _] = get_fn_ptr(algo, n);

    // For wasm we have a dedicated implementation going through js-sys
    use crate::time::Instant;
    let now = Instant::now();

    for _ in 0..n_runs {
        fwd(buf, scratch, twiddles, twiddles_init);
    }

    now.elapsed()
}

#[cfg(feature = "std")]
fn duration_div_f64(duration: Duration, n: f64) -> Duration {
    Duration::from_secs_f64(duration.as_secs_f64() / n)
}

#[cfg(feature = "std")]
pub(crate) fn measure_fastest_scratch(n: usize) -> StackReq {
    let align = CACHELINE_ALIGN;
    StackReq::new_aligned::<c64>(2 * n, align) // twiddles
        .and(StackReq::new_aligned::<c64>(n, align)) // buffer
        .and(StackReq::new_aligned::<c64>(n, align))
}

#[cfg(feature = "std")]
pub(crate) fn measure_fastest(
    min_bench_duration_per_algo: Duration,
    n: usize,
    stack: PodStack,
) -> (FftAlgo, Duration) {
    const N_ALGOS: usize = 8;
    const MIN_DURATION: Duration = if cfg!(target_arch = "wasm32") {
        // This is to account for the fact the js-sys based time measurement has a resolution of 1ms
        // on chrome, this will slow down the fft benchmarking somewhat, but it's barely noticeable
        Duration::from_millis(10)
    } else {
        Duration::from_millis(1)
    };

    assert!(n.is_power_of_two());

    let align = CACHELINE_ALIGN;

    let f = |_| c64 { re: 0.0, im: 0.0 };

    let (twiddles, stack) = stack.make_aligned_with::<c64, _>(2 * n, align, f);
    let twiddles_init = &twiddles[..n];
    let twiddles = &twiddles[n..];
    let (buf, mut stack) = stack.make_aligned_with::<c64, _>(n, align, f);

    {
        // initialize scratch to load it in the cpu cache
        drop(stack.rb_mut().make_aligned_with::<c64, _>(n, align, f));
    }

    let mut avg_durations = [Duration::ZERO; N_ALGOS];

    let discriminant_to_algo = |i: usize| -> FftAlgo {
        match i {
            0 => FftAlgo::Dif2,
            1 => FftAlgo::Dit2,
            2 => FftAlgo::Dif4,
            3 => FftAlgo::Dit4,
            4 => FftAlgo::Dif8,
            5 => FftAlgo::Dit8,
            6 => FftAlgo::Dif16,
            7 => FftAlgo::Dit16,
            _ => unreachable!(),
        }
    };

    for (i, avg) in (0..N_ALGOS).zip(&mut avg_durations) {
        let algo = discriminant_to_algo(i);

        let (init_n_runs, approx_duration) = {
            let mut n_runs: u128 = 1;

            loop {
                let duration =
                    measure_n_runs(n_runs, algo, buf, twiddles_init, twiddles, stack.rb_mut());

                if duration < MIN_DURATION {
                    n_runs *= 2;
                } else {
                    break (n_runs, duration_div_f64(duration, n_runs as f64));
                }
            }
        };

        let n_runs = (min_bench_duration_per_algo.as_secs_f64() / approx_duration.as_secs_f64())
            .ceil() as u128;
        *avg = if n_runs <= init_n_runs {
            approx_duration
        } else {
            let duration =
                measure_n_runs(n_runs, algo, buf, twiddles_init, twiddles, stack.rb_mut());
            duration_div_f64(duration, n_runs as f64)
        };
    }

    let best_time = avg_durations.iter().min().unwrap();
    let best_index = avg_durations
        .iter()
        .position(|elem| elem == best_time)
        .unwrap();
    (discriminant_to_algo(best_index), *best_time)
}

/// Ordered FFT plan.
///
/// This type holds a forward and inverse FFT plan and twiddling factors for a specific size.
/// The size must be a power of two, and can be as large as `2^16` (inclusive).
#[derive(Clone)]
pub struct Plan {
    fwd: fn(&mut [c64], &mut [c64], &[c64], &[c64]),
    inv: fn(&mut [c64], &mut [c64], &[c64], &[c64]),
    twiddles: ABox<[c64]>,
    twiddles_inv: ABox<[c64]>,
    algo: FftAlgo,
}

impl core::fmt::Debug for Plan {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Plan")
            .field("algo", &self.algo)
            .field("fft_size", &self.fft_size())
            .finish()
    }
}

fn do_nothing(_: &mut [c64], _: &mut [c64], _: &[c64], _: &[c64]) {}

pub(crate) fn get_fn_ptr(
    algo: FftAlgo,
    n: usize,
) -> [fn(&mut [c64], &mut [c64], &[c64], &[c64]); 2] {
    if n == 1 {
        return [do_nothing; 2];
    }
    use FftAlgo::*;
    match algo {
        Dif2 => dif2::fft_impl_dispatch(n),
        Dit2 => dit2::fft_impl_dispatch(n),
        Dif4 => dif4::fft_impl_dispatch(n),
        Dit4 => dit4::fft_impl_dispatch(n),
        Dif8 => dif8::fft_impl_dispatch(n),
        Dit8 => dit8::fft_impl_dispatch(n),
        Dif16 => dif16::fft_impl_dispatch(n),
        Dit16 => dit16::fft_impl_dispatch(n),
    }
}

impl Plan {
    /// Returns a new FFT plan for the given vector size, selected by the provided method.
    ///
    /// # Panics
    ///
    /// - Panics if `n` is not a power of two.
    /// - Panics if `n` is greater than `2^10`.
    ///
    /// # Example
    #[cfg_attr(feature = "std", doc = " ```")]
    #[cfg_attr(not(feature = "std"), doc = " ```ignore")]
    /// use tfhe_fft::ordered::{Method, Plan};
    /// use core::time::Duration;
    ///
    /// let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
    /// ```
    pub fn new(n: usize, method: Method) -> Self {
        assert!(n.is_power_of_two());
        assert!(n.trailing_zeros() < 11);

        let algo = match method {
            Method::UserProvided(algo) => algo,
            #[cfg(feature = "std")]
            Method::Measure(duration) => {
                measure_fastest(
                    duration,
                    n,
                    PodStack::new(&mut GlobalPodBuffer::new(measure_fastest_scratch(n))),
                )
                .0
            }
        };

        let [fwd, inv] = get_fn_ptr(algo, n);

        let mut twiddles = avec![c64::default(); 2 * n].into_boxed_slice();
        let mut twiddles_inv = avec![c64::default(); 2 * n].into_boxed_slice();
        use FftAlgo::*;
        let r = match algo {
            Dif2 | Dit2 => 2,
            Dif4 | Dit4 => 4,
            Dif8 | Dit8 => 8,
            Dif16 | Dit16 => 16,
        };
        fft_simd::init_wt(r, n, &mut twiddles, &mut twiddles_inv);
        Self {
            fwd,
            inv,
            twiddles,
            algo,
            twiddles_inv,
        }
    }

    /// Returns the vector size of the FFT.
    ///
    /// # Example
    #[cfg_attr(feature = "std", doc = " ```")]
    #[cfg_attr(not(feature = "std"), doc = " ```ignore")]
    /// use tfhe_fft::ordered::{Method, Plan};
    /// use core::time::Duration;
    ///
    /// let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
    /// assert_eq!(plan.fft_size(), 4);
    /// ```
    pub fn fft_size(&self) -> usize {
        self.twiddles.len() / 2
    }

    /// Returns the algorithm that's internally used by the FFT.
    ///
    /// # Example
    ///
    /// ```
    /// use tfhe_fft::ordered::{FftAlgo, Method, Plan};
    ///
    /// let plan = Plan::new(4, Method::UserProvided(FftAlgo::Dif2));
    /// assert_eq!(plan.algo(), FftAlgo::Dif2);
    /// ```
    pub fn algo(&self) -> FftAlgo {
        self.algo
    }

    /// Returns the size and alignment of the scratch memory needed to perform an FFT.
    ///
    /// # Example
    #[cfg_attr(feature = "std", doc = " ```")]
    #[cfg_attr(not(feature = "std"), doc = " ```ignore")]
    /// use tfhe_fft::ordered::{Method, Plan};
    /// use core::time::Duration;
    ///
    /// let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
    /// let scratch = plan.fft_scratch().unwrap();
    /// ```
    pub fn fft_scratch(&self) -> Result<StackReq, SizeOverflow> {
        StackReq::try_new_aligned::<c64>(self.fft_size(), CACHELINE_ALIGN)
    }

    /// Performs a forward FFT in place, using the provided stack as scratch space.
    ///
    /// # Example
    #[cfg_attr(feature = "std", doc = " ```")]
    #[cfg_attr(not(feature = "std"), doc = " ```ignore")]
    /// use tfhe_fft::c64;
    /// use tfhe_fft::ordered::{Method, Plan};
    /// use dyn_stack::{PodStack, GlobalPodBuffer};
    /// use core::time::Duration;
    ///
    /// let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
    ///
    /// let mut memory = GlobalPodBuffer::new(plan.fft_scratch().unwrap());
    /// let stack = PodStack::new(&mut memory);
    ///
    /// let mut buf = [c64::default(); 4];
    /// plan.fwd(&mut buf, stack);
    /// ```
    pub fn fwd(&self, buf: &mut [c64], stack: PodStack) {
        let n = self.fft_size();
        let (scratch, _) = stack.make_aligned_raw::<c64>(n, CACHELINE_ALIGN);
        let (w_init, w) = split_2(&self.twiddles);
        (self.fwd)(buf, scratch, w_init, w)
    }

    /// Performs an inverse FFT in place, using the provided stack as scratch space.
    ///
    /// # Example
    #[cfg_attr(feature = "std", doc = " ```")]
    #[cfg_attr(not(feature = "std"), doc = " ```ignore")]
    /// use tfhe_fft::c64;
    /// use tfhe_fft::ordered::{Method, Plan};
    /// use dyn_stack::{PodStack, GlobalPodBuffer, ReborrowMut};
    /// use core::time::Duration;
    ///
    /// let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
    ///
    /// let mut memory = GlobalPodBuffer::new(plan.fft_scratch().unwrap());
    /// let mut stack = PodStack::new(&mut memory);
    ///
    /// let mut buf = [c64::default(); 4];
    /// plan.fwd(&mut buf, stack.rb_mut());
    /// plan.inv(&mut buf, stack);
    /// ```
    pub fn inv(&self, buf: &mut [c64], stack: PodStack) {
        let n = self.fft_size();
        let (scratch, _) = stack.make_aligned_raw::<c64>(n, CACHELINE_ALIGN);
        let (w_init, w) = split_2(&self.twiddles_inv);
        (self.inv)(buf, scratch, w_init, w)
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        c64, dif16, dif2, dif4, dif8, dit16, dit2, dit4, dit8,
        fft_simd::{init_wt, FftSimd, Pod},
    };
    use num_complex::ComplexFloat;
    use rand::random;
    use rustfft::FftPlanner;

    extern crate alloc;
    use alloc::vec;

    fn test_fft_simd<c64xN: Pod>(simd: impl FftSimd<c64xN>) {
        for (r, fft) in [
            (2, dif2::fft_impl(simd)),
            (2, dit2::fft_impl(simd)),
            (4, dif4::fft_impl(simd)),
            (4, dit4::fft_impl(simd)),
            (8, dif8::fft_impl(simd)),
            (8, dit8::fft_impl(simd)),
            (16, dif16::fft_impl(simd)),
            (16, dit16::fft_impl(simd)),
        ] {
            if simd.lane_count() > r {
                continue;
            }

            for exp in 1..=10 {
                let n: usize = 1 << exp;
                if simd.lane_count() > 1 && simd.lane_count() * r > n {
                    continue;
                }

                let [fwd, inv] = fft.make_fn_ptr(n);

                fn test_inner(
                    n: usize,
                    r: usize,
                    fwd: fn(&mut [c64], &mut [c64], &[c64], &[c64]),
                    inv: fn(&mut [c64], &mut [c64], &[c64], &[c64]),
                ) {
                    let mut scratch = vec![c64::default(); n];
                    let mut twiddles = vec![c64::default(); 2 * n];
                    let mut twiddles_inv = vec![c64::default(); 2 * n];
                    init_wt(r, n, &mut twiddles, &mut twiddles_inv);
                    let mut x = vec![c64::default(); n];
                    for z in &mut x {
                        *z = c64::new(random(), random());
                    }
                    let orig = x.clone();
                    fwd(&mut x, &mut scratch, &twiddles[..n], &twiddles[n..]);
                    // compare with rustfft
                    {
                        let mut planner = FftPlanner::new();
                        let plan = planner.plan_fft_forward(n);
                        let mut y = orig.clone();
                        plan.process(&mut y);

                        for (z_expected, z_actual) in y.iter().zip(&x) {
                            assert!((*z_expected - *z_actual).abs() < 1e-12);
                        }
                    }
                    inv(&mut x, &mut scratch, &twiddles_inv[..n], &twiddles_inv[n..]);
                    for z in &mut x {
                        *z /= n as f64;
                    }
                    for (z_expected, z_actual) in orig.iter().zip(&x) {
                        assert!((*z_expected - *z_actual).abs() < 1e-14);
                    }
                }

                test_inner(n, r, fwd, inv);
            }
        }
    }

    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
    #[test]
    fn test_fft() {
        test_fft_simd(crate::fft_simd::Scalar);
        #[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
        {
            if let Some(simd) = pulp::x86::V3::try_new() {
                test_fft_simd(simd);
            }
            #[cfg(feature = "nightly")]
            if let Some(simd) = pulp::x86::V4::try_new() {
                test_fft_simd(simd);
            }
        }
    }
}