1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use core::convert::TryFrom;

use crate::LengthU32;
use crate::floating_point::{SaturateRound, FiniteF32};
use crate::scalar::Scalar;
use crate::wide::{f32x2, f32x4};

#[cfg(all(not(feature = "std"), feature = "libm"))]
use crate::scalar::FloatExt;

/// A point.
#[allow(missing_docs)]
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Default, Debug)]
pub struct Point {
    pub x: f32,
    pub y: f32,
}

impl From<(f32, f32)> for Point {
    #[inline]
    fn from(v: (f32, f32)) -> Self {
        Point { x: v.0, y: v.1 }
    }
}

impl Point {
    /// Creates a new `Point`.
    pub fn from_xy(x: f32, y: f32) -> Self {
        Point { x, y }
    }

    pub(crate) fn from_f32x2(r: f32x2) -> Self {
        Point::from_xy(r.x(), r.y())
    }

    pub(crate) fn to_f32x2(&self) -> f32x2 {
        f32x2::new(self.x, self.y)
    }

    /// Creates a point at 0x0 position.
    pub fn zero() -> Self {
        Point { x: 0.0, y: 0.0 }
    }

    /// Returns true if x and y are both zero.
    pub fn is_zero(&self) -> bool {
        self.x == 0.0 && self.y == 0.0
    }

    /// Returns true if both x and y are measurable values.
    ///
    /// Both values are other than infinities and NaN.
    pub(crate) fn is_finite(&self) -> bool {
        (self.x * self.y).is_finite()
    }

    pub(crate) fn almost_equal(&self, other: Point) -> bool {
        !(*self - other).can_normalize()
    }

    pub(crate) fn equals_within_tolerance(&self, other: Point, tolerance: f32) -> bool {
        (self.x - other.x).is_nearly_zero_within_tolerance(tolerance) &&
            (self.y - other.y).is_nearly_zero_within_tolerance(tolerance)
    }

    /// Scales (fX, fY) so that length() returns one, while preserving ratio of fX to fY,
    /// if possible.
    ///
    /// If prior length is nearly zero, sets vector to (0, 0) and returns
    /// false; otherwise returns true.
    pub(crate) fn normalize(&mut self) -> bool {
        self.set_length_from(self.x, self.y, 1.0)
    }

    /// Sets vector to (x, y) scaled so length() returns one, and so that (x, y)
    /// is proportional to (x, y).
    ///
    /// If (x, y) length is nearly zero, sets vector to (0, 0) and returns false;
    /// otherwise returns true.
    pub(crate) fn set_normalize(&mut self, x: f32, y: f32) -> bool {
        self.set_length_from(x, y, 1.0)
    }

    pub(crate) fn can_normalize(&self) -> bool {
        self.x.is_finite() && self.y.is_finite() && (self.x != 0.0 || self.y != 0.0)
    }

    /// Returns the Euclidean distance from origin.
    pub(crate) fn length(&self) -> f32 {
        let mag2 = self.x * self.x + self.y * self.y;
        if mag2.is_finite() {
            mag2.sqrt()
        } else {
            let xx = f64::from(self.x);
            let yy = f64::from(self.y);
            (xx * xx + yy * yy).sqrt() as f32
        }
    }

    /// Scales vector so that distanceToOrigin() returns length, if possible.
    ///
    /// If former length is nearly zero, sets vector to (0, 0) and return false;
    /// otherwise returns true.
    pub(crate) fn set_length(&mut self, length: f32) -> bool {
        self.set_length_from(self.x, self.y, length)
    }

    /// Sets vector to (x, y) scaled to length, if possible.
    ///
    /// If former length is nearly zero, sets vector to (0, 0) and return false;
    /// otherwise returns true.
    pub(crate) fn set_length_from(&mut self, x: f32, y: f32, length: f32) -> bool {
        set_point_length(self, x, y, length, &mut None)
    }

    /// Returns the Euclidean distance from origin.
    pub(crate) fn distance(&self, other: Point) -> f32 {
        (*self - other).length()
    }

    /// Returns the dot product of two points.
    pub(crate) fn dot(&self, other: Point) -> f32 {
        self.x * other.x + self.y * other.y
    }

    /// Returns the cross product of vector and vec.
    ///
    /// Vector and vec form three-dimensional vectors with z-axis value equal to zero.
    /// The cross product is a three-dimensional vector with x-axis and y-axis values
    /// equal to zero. The cross product z-axis component is returned.
    pub(crate) fn cross(&self, other: Point) -> f32 {
        self.x * other.y - self.y * other.x
    }

    pub(crate) fn distance_to_sqd(&self, pt: Point) -> f32 {
        let dx = self.x - pt.x;
        let dy = self.y - pt.y;
        dx * dx + dy * dy
    }

    pub(crate) fn length_sqd(&self) -> f32 {
        self.dot(*self)
    }

    /// Scales Point in-place by scale.
    pub(crate) fn scale(&mut self, scale: f32) {
        self.x *= scale;
        self.y *= scale;
    }

    pub(crate) fn scaled(&self, scale: f32) -> Self {
        Point::from_xy(self.x * scale, self.y * scale)
    }

    pub(crate) fn swap_coords(&mut self) {
        core::mem::swap(&mut self.x, &mut self.y);
    }

    pub(crate) fn rotate_cw(&mut self) {
        self.swap_coords();
        self.x = -self.x;
    }

    pub(crate) fn rotate_ccw(&mut self) {
        self.swap_coords();
        self.y = -self.y;
    }
}

// We have to worry about 2 tricky conditions:
// 1. underflow of mag2 (compared against nearlyzero^2)
// 2. overflow of mag2 (compared w/ isfinite)
//
// If we underflow, we return false. If we overflow, we compute again using
// doubles, which is much slower (3x in a desktop test) but will not overflow.
fn set_point_length(
    pt: &mut Point,
    mut x: f32,
    mut y: f32,
    length: f32,
    orig_length: &mut Option<f32>,
) -> bool {
    // our mag2 step overflowed to infinity, so use doubles instead.
    // much slower, but needed when x or y are very large, other wise we
    // divide by inf. and return (0,0) vector.
    let xx = x as f64;
    let yy = y as f64;
    let dmag = (xx * xx + yy * yy).sqrt();
    let dscale = length as f64 / dmag;
    x *= dscale as f32;
    y *= dscale as f32;

    // check if we're not finite, or we're zero-length
    if !x.is_finite() || !y.is_finite() || (x == 0.0 && y == 0.0) {
        *pt = Point::zero();
        return false;
    }

    let mut mag = 0.0;
    if orig_length.is_some() {
        mag = dmag as f32;
    }

    *pt = Point::from_xy(x, y);

    if orig_length.is_some() {
        *orig_length = Some(mag);
    }

    true
}

impl core::ops::Neg for Point {
    type Output = Point;

    fn neg(self) -> Self::Output {
        Point {
            x: -self.x,
            y: -self.y,
        }
    }
}

impl core::ops::Add for Point {
    type Output = Point;

    fn add(self, other: Point) -> Self::Output {
        Point::from_xy(
            self.x + other.x,
            self.y + other.y,
        )
    }
}

impl core::ops::AddAssign for Point {
    fn add_assign(&mut self, other: Point) {
        self.x += other.x;
        self.y += other.y;
    }
}

impl core::ops::Sub for Point {
    type Output = Point;

    fn sub(self, other: Point) -> Self::Output {
        Point::from_xy(
            self.x - other.x,
            self.y - other.y,
        )
    }
}

impl core::ops::SubAssign for Point {
    fn sub_assign(&mut self, other: Point) {
        self.x -= other.x;
        self.y -= other.y;
    }
}

impl core::ops::Mul for Point {
    type Output = Point;

    fn mul(self, other: Point) -> Self::Output {
        Point::from_xy(
            self.x * other.x,
            self.y * other.y,
        )
    }
}

impl core::ops::MulAssign for Point {
    fn mul_assign(&mut self, other: Point) {
        self.x *= other.x;
        self.y *= other.y;
    }
}


/// An integer size.
///
/// # Guarantees
///
/// - Width and height are positive and non-zero.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct IntSize {
    width: LengthU32,
    height: LengthU32,
}

impl IntSize {
    /// Creates a new `IntSize` from width and height.
    pub fn from_wh(width: u32, height: u32) -> Option<Self> {
        Some(IntSize {
            width: LengthU32::new(width)?,
            height: LengthU32::new(height)?,
        })
    }

    /// Returns width.
    pub fn width(&self) -> u32 {
        self.width.get()
    }

    /// Returns height.
    pub fn height(&self) -> u32 {
        self.height.get()
    }

    /// Converts the current size into a `IntRect` at a provided position.
    pub fn to_int_rect(&self, x: i32, y: i32) -> IntRect {
        IntRect::from_xywh(x, y, self.width.get(), self.height.get()).unwrap()
    }

    /// Converts the current size into a `IntRect` at a provided position.
    pub(crate) fn to_screen_int_rect(&self, x: u32, y: u32) -> ScreenIntRect {
        ScreenIntRect::from_xywh_safe(x, y, self.width, self.height)
    }
}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn int_size_tests() {
        assert_eq!(IntSize::from_wh(0, 0), None);
        assert_eq!(IntSize::from_wh(1, 0), None);
        assert_eq!(IntSize::from_wh(0, 1), None);

        let size = IntSize::from_wh(3, 4).unwrap();
        assert_eq!(size.to_int_rect(1, 2), IntRect::from_xywh(1, 2, 3, 4).unwrap());
        assert_eq!(size.to_screen_int_rect(1, 2), ScreenIntRect::from_xywh(1, 2, 3, 4).unwrap());
    }
}


/// An integer rectangle.
///
/// # Guarantees
///
/// - Width and height are in 1..=i32::MAX range.
/// - x+width and y+height does not overflow.
#[allow(missing_docs)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct IntRect {
    x: i32,
    y: i32,
    width: LengthU32,
    height: LengthU32,
}

impl IntRect {
    /// Creates a new `IntRect`.
    pub fn from_xywh(x: i32, y: i32, width: u32, height: u32) -> Option<Self> {
        x.checked_add(i32::try_from(width).ok()?)?;
        y.checked_add(i32::try_from(height).ok()?)?;

        Some(IntRect {
            x,
            y,
            width: LengthU32::new(width)?,
            height: LengthU32::new(height)?,
        })
    }

    /// Creates a new `IntRect`.
    pub fn from_ltrb(left: i32, top: i32, right: i32, bottom: i32) -> Option<Self> {
        let width = u32::try_from(right.checked_sub(left)?).ok()?;
        let height = u32::try_from(bottom.checked_sub(top)?).ok()?;
        IntRect::from_xywh(left, top, width, height)
    }

    /// Returns rect's X position.
    pub fn x(&self) -> i32 {
        self.x
    }

    /// Returns rect's Y position.
    pub fn y(&self) -> i32 {
        self.y
    }

    /// Returns rect's width.
    pub fn width(&self) -> u32 {
        self.width.get()
    }

    /// Returns rect's height.
    pub fn height(&self) -> u32 {
        self.height.get()
    }

    /// Returns rect's left edge.
    pub fn left(&self) -> i32 {
        self.x
    }

    /// Returns rect's top edge.
    pub fn top(&self) -> i32 {
        self.y
    }

    /// Returns rect's right edge.
    pub fn right(&self) -> i32 {
        // No overflow is guaranteed by constructors.
        self.x + self.width.get() as i32
    }

    /// Returns rect's bottom edge.
    pub fn bottom(&self) -> i32 {
        // No overflow is guaranteed by constructors.
        self.y + self.height.get() as i32
    }

    /// Returns rect's size.
    pub(crate) fn size(&self) -> IntSize {
        IntSize {
            width: self.width,
            height: self.height,
        }
    }

    /// Checks that the rect is completely includes `other` Rect.
    pub(crate) fn contains(&self, other: &Self) -> bool {
        self.x <= other.x &&
            self.y <= other.y &&
            self.right() >= other.right() &&
            self.bottom() >= other.bottom()
    }

    /// Returns an intersection of two rectangles.
    ///
    /// Returns `None` otherwise.
    pub(crate) fn intersect(&self, other: &Self) -> Option<Self> {
        let left = self.x.max(other.x);
        let top = self.y.max(other.y);

        let right = self.right().min(other.right());
        let bottom = self.bottom().min(other.bottom());

        let w = u32::try_from(right.checked_sub(left)?).ok()?;
        let h = u32::try_from(bottom.checked_sub(top)?).ok()?;

        IntRect::from_xywh(left, top, w, h)
    }

    /// Insets the rectangle.
    pub(crate) fn inset(&self, dx: i32, dy: i32) -> Option<Self> {
        IntRect::from_ltrb(
            self.left() + dx,
            self.top() + dy,
            self.right() - dx,
            self.bottom() - dy,
        )
    }

    /// Outsets the rectangle.
    pub(crate) fn make_outset(&self, dx: i32, dy: i32) -> Option<Self> {
        IntRect::from_ltrb(
            self.left().saturating_sub(dx),
            self.top().saturating_sub(dy),
            self.right().saturating_add(dx),
            self.bottom().saturating_add(dy),
        )
    }

    /// Converts into `Rect`.
    pub fn to_rect(&self) -> Rect {
        // Can't fail, because `IntRect` is always valid.
        Rect::from_ltrb(
            self.x as f32,
            self.y as f32,
            self.x as f32 + self.width.get() as f32,
            self.y as f32 + self.height.get() as f32,
        ).unwrap()
    }

    /// Converts into `ScreenIntRect`.
    ///
    /// # Checks
    ///
    /// - x >= 0
    /// - y >= 0
    pub(crate) fn to_screen_int_rect(&self) -> Option<ScreenIntRect> {
        let x = u32::try_from(self.x).ok()?;
        let y = u32::try_from(self.y).ok()?;
        Some(ScreenIntRect::from_xywh_safe(x, y, self.width, self.height))
    }
}

#[cfg(test)]
mod int_rect_tests {
    use super::*;

    #[test]
    fn tests() {
        assert_eq!(IntRect::from_xywh(0, 0, 0, 0), None);
        assert_eq!(IntRect::from_xywh(0, 0, 1, 0), None);
        assert_eq!(IntRect::from_xywh(0, 0, 0, 1), None);

        assert_eq!(IntRect::from_xywh(0, 0, core::u32::MAX, core::u32::MAX), None);
        assert_eq!(IntRect::from_xywh(0, 0, 1, core::u32::MAX), None);
        assert_eq!(IntRect::from_xywh(0, 0, core::u32::MAX, 1), None);

        assert_eq!(IntRect::from_xywh(core::i32::MAX, 0, 1, 1), None);
        assert_eq!(IntRect::from_xywh(0, core::i32::MAX, 1, 1), None);

        let r = IntRect::from_xywh(1, 2, 3, 4).unwrap();
        assert_eq!(r.to_screen_int_rect().unwrap(), ScreenIntRect::from_xywh(1, 2, 3, 4).unwrap());

        let r = IntRect::from_xywh(-1, -1, 3, 4).unwrap();
        assert_eq!(r.to_screen_int_rect(), None);

        {
            // No intersection.
            let r1 = IntRect::from_xywh(1, 2, 3, 4).unwrap();
            let r2 = IntRect::from_xywh(11, 12, 13, 14).unwrap();
            assert_eq!(r1.intersect(&r2), None);
        }

        {
            // Second inside the first one.
            let r1 = IntRect::from_xywh(1, 2, 30, 40).unwrap();
            let r2 = IntRect::from_xywh(11, 12, 13, 14).unwrap();
            assert_eq!(r1.intersect(&r2), IntRect::from_xywh(11, 12, 13, 14));
        }

        {
            // Partial overlap.
            let r1 = IntRect::from_xywh(1, 2, 30, 40).unwrap();
            let r2 = IntRect::from_xywh(11, 12, 50, 60).unwrap();
            assert_eq!(r1.intersect(&r2), IntRect::from_xywh(11, 12, 20, 30));
        }
    }
}


/// A screen `IntRect`.
///
/// # Guarantees
///
/// - X and Y are in 0..=i32::MAX range.
/// - Width and height are in 1..=i32::MAX range.
/// - x+width and y+height does not overflow.
#[allow(missing_docs)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct ScreenIntRect {
    x: u32,
    y: u32,
    width: LengthU32,
    height: LengthU32,
}

impl ScreenIntRect {
    /// Creates a new `ScreenIntRect`.
    pub fn from_xywh(x: u32, y: u32, width: u32, height: u32) -> Option<Self> {
        i32::try_from(x).ok()?;
        i32::try_from(y).ok()?;
        i32::try_from(width).ok()?;
        i32::try_from(height).ok()?;

        x.checked_add(width)?;
        y.checked_add(height)?;

        let width = LengthU32::new(width)?;
        let height = LengthU32::new(height)?;

        Some(ScreenIntRect { x, y, width, height })
    }

    /// Creates a new `ScreenIntRect`.
    pub const fn from_xywh_safe(x: u32, y: u32, width: LengthU32, height: LengthU32) -> Self {
        ScreenIntRect { x, y, width, height }
    }

    /// Returns rect's X position.
    pub fn x(&self) -> u32 {
        self.x
    }

    /// Returns rect's Y position.
    pub fn y(&self) -> u32 {
        self.y
    }

    /// Returns rect's width.
    pub fn width(&self) -> u32 {
        self.width.get()
    }

    /// Returns rect's height.
    pub fn height(&self) -> u32 {
        self.height.get()
    }

    /// Returns rect's width.
    pub fn width_safe(&self) -> LengthU32 {
        self.width
    }

    /// Returns rect's left edge.
    pub fn left(&self) -> u32 {
        self.x
    }

    /// Returns rect's top edge.
    pub fn top(&self) -> u32 {
        self.y
    }

    /// Returns rect's right edge.
    ///
    /// The right edge is at least 1.
    pub fn right(&self) -> u32 {
        // No overflow is guaranteed by constructors.
        self.x + self.width.get()
    }

    /// Returns rect's bottom edge.
    ///
    /// The bottom edge is at least 1.
    pub fn bottom(&self) -> u32 {
        // No overflow is guaranteed by constructors.
        self.y + self.height.get()
    }

    /// Returns rect's size.
    pub fn size(&self) -> IntSize {
        IntSize {
            width: self.width,
            height: self.height,
        }
    }

    /// Checks that the rect is completely includes `other` Rect.
    pub fn contains(&self, other: &Self) -> bool {
        self.x <= other.x &&
            self.y <= other.y &&
            self.right() >= other.right() &&
            self.bottom() >= other.bottom()
    }

    /// Converts into a `IntRect`.
    pub fn to_int_rect(&self) -> IntRect {
        // Everything is already checked by constructors.
        IntRect::from_xywh(
            self.x as i32,
            self.y as i32,
            self.width.get(),
            self.height.get(),
        ).unwrap()
    }

    /// Converts into a `Rect`.
    pub fn to_rect(&self) -> Rect {
        // Can't fail, because `ScreenIntRect` is always valid.
        // And u32 always fits into f32.
        Rect::from_ltrb(
            self.x as f32,
            self.y as f32,
            self.x as f32 + self.width.get() as f32,
            self.y as f32 + self.height.get() as f32,
        ).unwrap()
    }
}

#[cfg(test)]
mod screen_int_rect_tests {
    use super::*;

    #[test]
    fn tests() {
        assert_eq!(ScreenIntRect::from_xywh(0, 0, 0, 0), None);
        assert_eq!(ScreenIntRect::from_xywh(0, 0, 1, 0), None);
        assert_eq!(ScreenIntRect::from_xywh(0, 0, 0, 1), None);

        assert_eq!(ScreenIntRect::from_xywh(0, 0, core::u32::MAX, core::u32::MAX), None);
        assert_eq!(ScreenIntRect::from_xywh(0, 0, 1, core::u32::MAX), None);
        assert_eq!(ScreenIntRect::from_xywh(0, 0, core::u32::MAX, 1), None);

        assert_eq!(ScreenIntRect::from_xywh(core::u32::MAX, 0, 1, 1), None);
        assert_eq!(ScreenIntRect::from_xywh(0, core::u32::MAX, 1, 1), None);

        assert_eq!(ScreenIntRect::from_xywh(core::u32::MAX, core::u32::MAX, core::u32::MAX, core::u32::MAX), None);

        let r = ScreenIntRect::from_xywh(1, 2, 3, 4).unwrap();
        assert_eq!(r.x(), 1);
        assert_eq!(r.y(), 2);
        assert_eq!(r.width(), 3);
        assert_eq!(r.height(), 4);
        assert_eq!(r.right(), 4);
        assert_eq!(r.bottom(), 6);
    }
}


/// A rectangle defined by left, top, right and bottom edges.
///
/// Can have zero width and/or height. But not a negative one.
///
/// # Guarantees
///
/// - All values are finite.
/// - Left edge is <= right.
/// - Top edge is <= bottom.
/// - Width and height are <= f32::MAX.
#[allow(missing_docs)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Rect {
    left: FiniteF32,
    top: FiniteF32,
    right: FiniteF32,
    bottom: FiniteF32,
}

impl Rect {
    /// Creates new `Rect`.
    pub fn from_ltrb(left: f32, top: f32, right: f32, bottom: f32) -> Option<Self> {
        let left = FiniteF32::new(left)?;
        let top = FiniteF32::new(top)?;
        let right = FiniteF32::new(right)?;
        let bottom = FiniteF32::new(bottom)?;

        if left.get() <= right.get() && top.get() <= bottom.get() {
            // Width and height must not overflow.
            checked_f32_sub(right.get(), left.get())?;
            checked_f32_sub(bottom.get(), top.get())?;

            Some(Rect { left, top, right, bottom })
        } else {
            None
        }
    }

    /// Creates new `Rect`.
    pub fn from_xywh(x: f32, y: f32, w: f32, h: f32) -> Option<Self> {
        Rect::from_ltrb(x, y, w + x, h + y)
    }

    /// Returns the left edge.
    pub fn left(&self) -> f32 {
        self.left.get()
    }

    /// Returns the top edge.
    pub fn top(&self) -> f32 {
        self.top.get()
    }

    /// Returns the right edge.
    pub fn right(&self) -> f32 {
        self.right.get()
    }

    /// Returns the bottom edge.
    pub fn bottom(&self) -> f32 {
        self.bottom.get()
    }

    /// Returns rect's X position.
    pub fn x(&self) -> f32 {
        self.left.get()
    }

    /// Returns rect's Y position.
    pub fn y(&self) -> f32 {
        self.top.get()
    }

    /// Returns rect's width.
    #[inline]
    pub fn width(&self) -> f32 {
        self.right.get() - self.left.get()
    }

    /// Returns rect's height.
    #[inline]
    pub fn height(&self) -> f32 {
        self.bottom.get() - self.top.get()
    }

    /// Converts into an `IntRect` by adding 0.5 and discarding the fractional portion.
    ///
    /// Width and height are guarantee to be >= 1.
    pub fn round(&self) -> Option<IntRect> {
        IntRect::from_xywh(
            i32::saturate_round(self.x()),
            i32::saturate_round(self.y()),
            core::cmp::max(1, i32::saturate_round(self.width()) as u32),
            core::cmp::max(1, i32::saturate_round(self.height()) as u32),
        )
    }

    /// Converts into an `IntRect` rounding outwards.
    ///
    /// Width and height are guarantee to be >= 1.
    pub(crate) fn round_out(&self) -> Option<IntRect> {
        IntRect::from_xywh(
            i32::saturate_floor(self.x()),
            i32::saturate_floor(self.y()),
            core::cmp::max(1, i32::saturate_ceil(self.width()) as u32),
            core::cmp::max(1, i32::saturate_ceil(self.height()) as u32),
        )
    }

    /// Returns an intersection of two rectangles.
    ///
    /// Returns `None` otherwise.
    pub(crate) fn intersect(&self, other: &Self) -> Option<Self> {
        let left = self.x().max(other.x());
        let top = self.y().max(other.y());

        let right = self.right().min(other.right());
        let bottom = self.bottom().min(other.bottom());

        Rect::from_ltrb(left, top, right, bottom)
    }

    /// Creates a Rect from Point array.
    ///
    /// Returns None if count is zero or if Point array contains an infinity or NaN.
    pub(crate) fn from_points(points: &[Point]) -> Option<Self> {
        if points.is_empty() {
            return None;
        }

        let mut offset = 0;
        let mut min;
        let mut max;
        if points.len() & 1 != 0 {
            let pt = points[0];
            min = f32x4::from([pt.x, pt.y, pt.x, pt.y]);
            max = min;
            offset += 1;
        } else {
            let pt0 = points[0];
            let pt1 = points[1];
            min = f32x4::from([pt0.x, pt0.y, pt1.x, pt1.y]);
            max = min;
            offset += 2;
        }

        let mut accum = f32x4::default();
        while offset != points.len() {
            let pt0 = points[offset + 0];
            let pt1 = points[offset + 1];
            let xy = f32x4::from([pt0.x, pt0.y, pt1.x, pt1.y]);

            accum *= xy;
            min = min.min(xy);
            max = max.max(xy);
            offset += 2;
        }

        let all_finite = accum * f32x4::default() == f32x4::default();
        let min: [f32; 4] = min.into();
        let max: [f32; 4] = max.into();
        if all_finite {
            Rect::from_ltrb(
                min[0].min(min[2]),
                min[1].min(min[3]),
                max[0].max(max[2]),
                max[1].max(max[3]),
            )
        } else {
            None
        }
    }

    pub(crate) fn inset(&mut self, dx: f32, dy: f32) -> Option<Self> {
        Rect::from_ltrb(
            self.left() + dx,
            self.top() + dy,
            self.right() - dx,
            self.bottom() - dy,
        )
    }

    pub(crate) fn outset(&mut self, dx: f32, dy: f32) -> Option<Self> {
        self.inset(-dx, -dy)
    }
}

fn checked_f32_sub(a: f32, b: f32) -> Option<f32> {
    debug_assert!(a.is_finite());
    debug_assert!(b.is_finite());

    let n = a as f64 - b as f64;
    // Not sure if this is perfectly correct.
    if n > core::f32::MIN as f64 && n < core::f32::MAX as f64 {
        Some(n as f32)
    } else {
        None
    }
}


#[cfg(test)]
mod rect_tests {
    use super::*;

    #[test]
    fn tests() {
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 5.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, 5.0), None);
        assert_eq!(Rect::from_ltrb(core::f32::NAN, 10.0, 10.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, core::f32::NAN, 10.0, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, core::f32::NAN, 10.0), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, core::f32::NAN), None);
        assert_eq!(Rect::from_ltrb(10.0, 10.0, 10.0, core::f32::INFINITY), None);

        let rect = Rect::from_ltrb(10.0, 20.0, 30.0, 40.0).unwrap();
        assert_eq!(rect.left(), 10.0);
        assert_eq!(rect.top(), 20.0);
        assert_eq!(rect.right(), 30.0);
        assert_eq!(rect.bottom(), 40.0);
        assert_eq!(rect.width(), 20.0);
        assert_eq!(rect.height(), 20.0);

        let rect = Rect::from_ltrb(-30.0, 20.0, -10.0, 40.0).unwrap();
        assert_eq!(rect.width(), 20.0);
        assert_eq!(rect.height(), 20.0);
    }

    #[test]
    fn round_overflow() {
        // minimum value that cause overflow
        // because i32::MAX has no exact conversion to f32
        let x = 128.0;
        // maximum width
        let width = i32::MAX as f32;

        let rect = Rect::from_xywh(x, 0.0, width, 1.0).unwrap();
        assert_eq!(rect.round(), None);
        assert_eq!(rect.round_out(), None);
    }
}