tokio_reactor/lib.rs
1#![doc(html_root_url = "https://docs.rs/tokio-reactor/0.1.12")]
2#![deny(missing_docs, missing_debug_implementations)]
3
4//! Event loop that drives Tokio I/O resources.
5//!
6//! > **Note:** This crate is **deprecated in tokio 0.2.x** and has been moved
7//! > and refactored into various places in the [`tokio::runtime`] and
8//! > [`tokio::io`] modules of the [`tokio`] crate. The Reactor has also been
9//! > renamed the "I/O Driver".
10//!
11//! [`tokio::runtime`]: https://docs.rs/tokio/latest/tokio/runtime/index.html
12//! [`tokio::io`]: https://docs.rs/tokio/latest/tokio/io/index.html
13//! [`tokio`]: https://docs.rs/tokio/latest/tokio/index.html
14//! [`io-driver` feature]: https://docs.rs/tokio/0.2.9/tokio/index.html#feature-flags
15//!
16//! The reactor is the engine that drives asynchronous I/O resources (like TCP and
17//! UDP sockets). It is backed by [`mio`] and acts as a bridge between [`mio`] and
18//! [`futures`].
19//!
20//! The crate provides:
21//!
22//! * [`Reactor`] is the main type of this crate. It performs the event loop logic.
23//!
24//! * [`Handle`] provides a reference to a reactor instance.
25//!
26//! * [`Registration`] and [`PollEvented`] allow third parties to implement I/O
27//! resources that are driven by the reactor.
28//!
29//! Application authors will not use this crate directly. Instead, they will use the
30//! `tokio` crate. Library authors should only depend on `tokio-reactor` if they
31//! are building a custom I/O resource.
32//!
33//! For more details, see [reactor module] documentation in the Tokio crate.
34//!
35//! [`mio`]: http://github.com/carllerche/mio
36//! [`futures`]: http://github.com/rust-lang-nursery/futures-rs
37//! [`Reactor`]: struct.Reactor.html
38//! [`Handle`]: struct.Handle.html
39//! [`Registration`]: struct.Registration.html
40//! [`PollEvented`]: struct.PollEvented.html
41//! [reactor module]: https://docs.rs/tokio/0.1/tokio/reactor/index.html
42
43extern crate crossbeam_utils;
44#[macro_use]
45extern crate futures;
46#[macro_use]
47extern crate lazy_static;
48#[macro_use]
49extern crate log;
50extern crate mio;
51extern crate num_cpus;
52extern crate parking_lot;
53extern crate slab;
54extern crate tokio_executor;
55extern crate tokio_io;
56extern crate tokio_sync;
57
58pub(crate) mod background;
59mod poll_evented;
60mod registration;
61mod sharded_rwlock;
62
63// ===== Public re-exports =====
64
65pub use self::background::{Background, Shutdown};
66pub use self::poll_evented::PollEvented;
67pub use self::registration::Registration;
68
69// ===== Private imports =====
70
71use sharded_rwlock::RwLock;
72
73use futures::task::Task;
74use tokio_executor::park::{Park, Unpark};
75use tokio_executor::Enter;
76use tokio_sync::task::AtomicTask;
77
78use std::cell::RefCell;
79use std::error::Error;
80use std::io;
81use std::mem;
82#[cfg(all(unix, not(target_os = "fuchsia")))]
83use std::os::unix::io::{AsRawFd, RawFd};
84use std::sync::atomic::AtomicUsize;
85use std::sync::atomic::Ordering::{Relaxed, SeqCst};
86use std::sync::{Arc, Weak};
87use std::time::{Duration, Instant};
88use std::{fmt, usize};
89
90use log::Level;
91use mio::event::Evented;
92use slab::Slab;
93
94/// The core reactor, or event loop.
95///
96/// The event loop is the main source of blocking in an application which drives
97/// all other I/O events and notifications happening. Each event loop can have
98/// multiple handles pointing to it, each of which can then be used to create
99/// various I/O objects to interact with the event loop in interesting ways.
100pub struct Reactor {
101 /// Reuse the `mio::Events` value across calls to poll.
102 events: mio::Events,
103
104 /// State shared between the reactor and the handles.
105 inner: Arc<Inner>,
106
107 _wakeup_registration: mio::Registration,
108}
109
110/// A reference to a reactor.
111///
112/// A `Handle` is used for associating I/O objects with an event loop
113/// explicitly. Typically though you won't end up using a `Handle` that often
114/// and will instead use the default reactor for the execution context.
115///
116/// By default, most components bind lazily to reactors.
117/// To get this behavior when manually passing a `Handle`, use `default()`.
118#[derive(Clone)]
119pub struct Handle {
120 inner: Option<HandlePriv>,
121}
122
123/// Like `Handle`, but never `None`.
124#[derive(Clone)]
125struct HandlePriv {
126 inner: Weak<Inner>,
127}
128
129/// Return value from the `turn` method on `Reactor`.
130///
131/// Currently this value doesn't actually provide any functionality, but it may
132/// in the future give insight into what happened during `turn`.
133#[derive(Debug)]
134pub struct Turn {
135 _priv: (),
136}
137
138/// Error returned from `Handle::set_fallback`.
139#[derive(Clone, Debug)]
140pub struct SetFallbackError(());
141
142#[deprecated(since = "0.1.2", note = "use SetFallbackError instead")]
143#[doc(hidden)]
144pub type SetDefaultError = SetFallbackError;
145
146/// Ensure that the default reactor is removed from the thread-local context
147/// when leaving the scope. This handles cases that involve panicking.
148#[derive(Debug)]
149pub struct DefaultGuard {
150 _p: (),
151}
152
153#[test]
154fn test_handle_size() {
155 use std::mem;
156 assert_eq!(mem::size_of::<Handle>(), mem::size_of::<HandlePriv>());
157}
158
159struct Inner {
160 /// The underlying system event queue.
161 io: mio::Poll,
162
163 /// ABA guard counter
164 next_aba_guard: AtomicUsize,
165
166 /// Dispatch slabs for I/O and futures events
167 io_dispatch: RwLock<Slab<ScheduledIo>>,
168
169 /// Used to wake up the reactor from a call to `turn`
170 wakeup: mio::SetReadiness,
171}
172
173struct ScheduledIo {
174 aba_guard: usize,
175 readiness: AtomicUsize,
176 reader: AtomicTask,
177 writer: AtomicTask,
178}
179
180#[derive(Debug, Eq, PartialEq, Clone, Copy)]
181pub(crate) enum Direction {
182 Read,
183 Write,
184}
185
186/// The global fallback reactor.
187static HANDLE_FALLBACK: AtomicUsize = AtomicUsize::new(0);
188
189thread_local! {
190 /// Tracks the reactor for the current execution context.
191 static CURRENT_REACTOR: RefCell<Option<HandlePriv>> = RefCell::new(None)
192}
193
194const TOKEN_SHIFT: usize = 22;
195
196// Kind of arbitrary, but this reserves some token space for later usage.
197const MAX_SOURCES: usize = (1 << TOKEN_SHIFT) - 1;
198const TOKEN_WAKEUP: mio::Token = mio::Token(MAX_SOURCES);
199
200fn _assert_kinds() {
201 fn _assert<T: Send + Sync>() {}
202
203 _assert::<Handle>();
204}
205
206// ===== impl Reactor =====
207
208/// Set the default reactor for the duration of the closure
209///
210/// # Panics
211///
212/// This function panics if there already is a default reactor set.
213pub fn with_default<F, R>(handle: &Handle, enter: &mut Enter, f: F) -> R
214where
215 F: FnOnce(&mut Enter) -> R,
216{
217 // This ensures the value for the current reactor gets reset even if there
218 // is a panic.
219 let _guard = set_default(handle);
220 f(enter)
221}
222
223/// Sets `handle` as the default reactor, returning a guard that unsets it when
224/// dropped.
225///
226/// # Panics
227///
228/// This function panics if there already is a default reactor set.
229pub fn set_default(handle: &Handle) -> DefaultGuard {
230 CURRENT_REACTOR.with(|current| {
231 let mut current = current.borrow_mut();
232
233 assert!(
234 current.is_none(),
235 "default Tokio reactor already set \
236 for execution context"
237 );
238
239 let handle = match handle.as_priv() {
240 Some(handle) => handle,
241 None => {
242 panic!("`handle` does not reference a reactor");
243 }
244 };
245
246 *current = Some(handle.clone());
247 });
248 DefaultGuard { _p: () }
249}
250
251impl Reactor {
252 /// Creates a new event loop, returning any error that happened during the
253 /// creation.
254 pub fn new() -> io::Result<Reactor> {
255 let io = mio::Poll::new()?;
256 let wakeup_pair = mio::Registration::new2();
257
258 io.register(
259 &wakeup_pair.0,
260 TOKEN_WAKEUP,
261 mio::Ready::readable(),
262 mio::PollOpt::level(),
263 )?;
264
265 Ok(Reactor {
266 events: mio::Events::with_capacity(1024),
267 _wakeup_registration: wakeup_pair.0,
268 inner: Arc::new(Inner {
269 io: io,
270 next_aba_guard: AtomicUsize::new(0),
271 io_dispatch: RwLock::new(Slab::with_capacity(1)),
272 wakeup: wakeup_pair.1,
273 }),
274 })
275 }
276
277 /// Returns a handle to this event loop which can be sent across threads
278 /// and can be used as a proxy to the event loop itself.
279 ///
280 /// Handles are cloneable and clones always refer to the same event loop.
281 /// This handle is typically passed into functions that create I/O objects
282 /// to bind them to this event loop.
283 pub fn handle(&self) -> Handle {
284 Handle {
285 inner: Some(HandlePriv {
286 inner: Arc::downgrade(&self.inner),
287 }),
288 }
289 }
290
291 /// Configures the fallback handle to be returned from `Handle::default`.
292 ///
293 /// The `Handle::default()` function will by default lazily spin up a global
294 /// thread and run a reactor on this global thread. This behavior is not
295 /// always desirable in all applications, however, and sometimes a different
296 /// fallback reactor is desired.
297 ///
298 /// This function will attempt to globally alter the return value of
299 /// `Handle::default()` to return the `handle` specified rather than a
300 /// lazily initialized global thread. If successful then all future calls to
301 /// `Handle::default()` which would otherwise fall back to the global thread
302 /// will instead return a clone of the handle specified.
303 ///
304 /// # Errors
305 ///
306 /// This function may not always succeed in configuring the fallback handle.
307 /// If this function was previously called (or perhaps concurrently called
308 /// on many threads) only the *first* invocation of this function will
309 /// succeed. All other invocations will return an error.
310 ///
311 /// Additionally if the global reactor thread has already been initialized
312 /// then this function will also return an error. (aka if `Handle::default`
313 /// has been called previously in this program).
314 pub fn set_fallback(&self) -> Result<(), SetFallbackError> {
315 set_fallback(self.handle().into_priv().unwrap())
316 }
317
318 /// Performs one iteration of the event loop, blocking on waiting for events
319 /// for at most `max_wait` (forever if `None`).
320 ///
321 /// This method is the primary method of running this reactor and processing
322 /// I/O events that occur. This method executes one iteration of an event
323 /// loop, blocking at most once waiting for events to happen.
324 ///
325 /// If a `max_wait` is specified then the method should block no longer than
326 /// the duration specified, but this shouldn't be used as a super-precise
327 /// timer but rather a "ballpark approximation"
328 ///
329 /// # Return value
330 ///
331 /// This function returns an instance of `Turn`
332 ///
333 /// `Turn` as of today has no extra information with it and can be safely
334 /// discarded. In the future `Turn` may contain information about what
335 /// happened while this reactor blocked.
336 ///
337 /// # Errors
338 ///
339 /// This function may also return any I/O error which occurs when polling
340 /// for readiness of I/O objects with the OS. This is quite unlikely to
341 /// arise and typically mean that things have gone horribly wrong at that
342 /// point. Currently this is primarily only known to happen for internal
343 /// bugs to `tokio` itself.
344 pub fn turn(&mut self, max_wait: Option<Duration>) -> io::Result<Turn> {
345 self.poll(max_wait)?;
346 Ok(Turn { _priv: () })
347 }
348
349 /// Returns true if the reactor is currently idle.
350 ///
351 /// Idle is defined as all tasks that have been spawned have completed,
352 /// either successfully or with an error.
353 pub fn is_idle(&self) -> bool {
354 self.inner.io_dispatch.read().is_empty()
355 }
356
357 /// Run this reactor on a background thread.
358 ///
359 /// This function takes ownership, spawns a new thread, and moves the
360 /// reactor to this new thread. It then runs the reactor, driving all
361 /// associated I/O resources, until the `Background` handle is dropped or
362 /// explicitly shutdown.
363 pub fn background(self) -> io::Result<Background> {
364 Background::new(self)
365 }
366
367 fn poll(&mut self, max_wait: Option<Duration>) -> io::Result<()> {
368 // Block waiting for an event to happen, peeling out how many events
369 // happened.
370 match self.inner.io.poll(&mut self.events, max_wait) {
371 Ok(_) => {}
372 Err(e) => return Err(e),
373 }
374
375 let start = if log_enabled!(Level::Debug) {
376 Some(Instant::now())
377 } else {
378 None
379 };
380
381 // Process all the events that came in, dispatching appropriately
382 let mut events = 0;
383 for event in self.events.iter() {
384 events += 1;
385 let token = event.token();
386 trace!("event {:?} {:?}", event.readiness(), event.token());
387
388 if token == TOKEN_WAKEUP {
389 self.inner
390 .wakeup
391 .set_readiness(mio::Ready::empty())
392 .unwrap();
393 } else {
394 self.dispatch(token, event.readiness());
395 }
396 }
397
398 if let Some(start) = start {
399 let dur = start.elapsed();
400 trace!(
401 "loop process - {} events, {}.{:03}s",
402 events,
403 dur.as_secs(),
404 dur.subsec_nanos() / 1_000_000
405 );
406 }
407
408 Ok(())
409 }
410
411 fn dispatch(&self, token: mio::Token, ready: mio::Ready) {
412 let aba_guard = token.0 & !MAX_SOURCES;
413 let token = token.0 & MAX_SOURCES;
414
415 let mut rd = None;
416 let mut wr = None;
417
418 // Create a scope to ensure that notifying the tasks stays out of the
419 // lock's critical section.
420 {
421 let io_dispatch = self.inner.io_dispatch.read();
422
423 let io = match io_dispatch.get(token) {
424 Some(io) => io,
425 None => return,
426 };
427
428 if aba_guard != io.aba_guard {
429 return;
430 }
431
432 io.readiness.fetch_or(ready.as_usize(), Relaxed);
433
434 if ready.is_writable() || platform::is_hup(&ready) {
435 wr = io.writer.take_task();
436 }
437
438 if !(ready & (!mio::Ready::writable())).is_empty() {
439 rd = io.reader.take_task();
440 }
441 }
442
443 if let Some(task) = rd {
444 task.notify();
445 }
446
447 if let Some(task) = wr {
448 task.notify();
449 }
450 }
451}
452
453#[cfg(all(unix, not(target_os = "fuchsia")))]
454impl AsRawFd for Reactor {
455 fn as_raw_fd(&self) -> RawFd {
456 self.inner.io.as_raw_fd()
457 }
458}
459
460impl Park for Reactor {
461 type Unpark = Handle;
462 type Error = io::Error;
463
464 fn unpark(&self) -> Self::Unpark {
465 self.handle()
466 }
467
468 fn park(&mut self) -> io::Result<()> {
469 self.turn(None)?;
470 Ok(())
471 }
472
473 fn park_timeout(&mut self, duration: Duration) -> io::Result<()> {
474 self.turn(Some(duration))?;
475 Ok(())
476 }
477}
478
479impl fmt::Debug for Reactor {
480 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
481 write!(f, "Reactor")
482 }
483}
484
485// ===== impl Handle =====
486
487impl Handle {
488 #[doc(hidden)]
489 #[deprecated(note = "semantics were sometimes surprising, use Handle::default()")]
490 pub fn current() -> Handle {
491 // TODO: Should this panic on error?
492 HandlePriv::try_current()
493 .map(|handle| Handle {
494 inner: Some(handle),
495 })
496 .unwrap_or(Handle {
497 inner: Some(HandlePriv { inner: Weak::new() }),
498 })
499 }
500
501 fn as_priv(&self) -> Option<&HandlePriv> {
502 self.inner.as_ref()
503 }
504
505 fn into_priv(self) -> Option<HandlePriv> {
506 self.inner
507 }
508
509 fn wakeup(&self) {
510 if let Some(handle) = self.as_priv() {
511 handle.wakeup();
512 }
513 }
514}
515
516impl Unpark for Handle {
517 fn unpark(&self) {
518 if let Some(ref h) = self.inner {
519 h.wakeup();
520 }
521 }
522}
523
524impl Default for Handle {
525 /// Returns a "default" handle, i.e., a handle that lazily binds to a reactor.
526 fn default() -> Handle {
527 Handle { inner: None }
528 }
529}
530
531impl fmt::Debug for Handle {
532 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
533 write!(f, "Handle")
534 }
535}
536
537fn set_fallback(handle: HandlePriv) -> Result<(), SetFallbackError> {
538 unsafe {
539 let val = handle.into_usize();
540 match HANDLE_FALLBACK.compare_exchange(0, val, SeqCst, SeqCst) {
541 Ok(_) => Ok(()),
542 Err(_) => {
543 drop(HandlePriv::from_usize(val));
544 Err(SetFallbackError(()))
545 }
546 }
547 }
548}
549
550// ===== impl HandlePriv =====
551
552impl HandlePriv {
553 /// Try to get a handle to the current reactor.
554 ///
555 /// Returns `Err` if no handle is found.
556 pub(crate) fn try_current() -> io::Result<HandlePriv> {
557 CURRENT_REACTOR.with(|current| match *current.borrow() {
558 Some(ref handle) => Ok(handle.clone()),
559 None => HandlePriv::fallback(),
560 })
561 }
562
563 /// Returns a handle to the fallback reactor.
564 fn fallback() -> io::Result<HandlePriv> {
565 let mut fallback = HANDLE_FALLBACK.load(SeqCst);
566
567 // If the fallback hasn't been previously initialized then let's spin
568 // up a helper thread and try to initialize with that. If we can't
569 // actually create a helper thread then we'll just return a "defunct"
570 // handle which will return errors when I/O objects are attempted to be
571 // associated.
572 if fallback == 0 {
573 let reactor = match Reactor::new() {
574 Ok(reactor) => reactor,
575 Err(_) => {
576 return Err(io::Error::new(
577 io::ErrorKind::Other,
578 "failed to create reactor",
579 ));
580 }
581 };
582
583 // If we successfully set ourselves as the actual fallback then we
584 // want to `forget` the helper thread to ensure that it persists
585 // globally. If we fail to set ourselves as the fallback that means
586 // that someone was racing with this call to `Handle::default`.
587 // They ended up winning so we'll destroy our helper thread (which
588 // shuts down the thread) and reload the fallback.
589 if set_fallback(reactor.handle().into_priv().unwrap()).is_ok() {
590 let ret = reactor.handle().into_priv().unwrap();
591
592 match reactor.background() {
593 Ok(bg) => bg.forget(),
594 // The global handle is fubar, but y'all probably got bigger
595 // problems if a thread can't spawn.
596 Err(_) => {}
597 }
598
599 return Ok(ret);
600 }
601
602 fallback = HANDLE_FALLBACK.load(SeqCst);
603 }
604
605 // At this point our fallback handle global was configured so we use
606 // its value to reify a handle, clone it, and then forget our reified
607 // handle as we don't actually have an owning reference to it.
608 assert!(fallback != 0);
609
610 let ret = unsafe {
611 let handle = HandlePriv::from_usize(fallback);
612 let ret = handle.clone();
613
614 // This prevents `handle` from being dropped and having the ref
615 // count decremented.
616 drop(handle.into_usize());
617
618 ret
619 };
620
621 Ok(ret)
622 }
623
624 /// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
625 /// makes the next call to `turn` return immediately.
626 ///
627 /// This method is intended to be used in situations where a notification
628 /// needs to otherwise be sent to the main reactor. If the reactor is
629 /// currently blocked inside of `turn` then it will wake up and soon return
630 /// after this method has been called. If the reactor is not currently
631 /// blocked in `turn`, then the next call to `turn` will not block and
632 /// return immediately.
633 fn wakeup(&self) {
634 if let Some(inner) = self.inner() {
635 inner.wakeup.set_readiness(mio::Ready::readable()).unwrap();
636 }
637 }
638
639 fn into_usize(self) -> usize {
640 unsafe { mem::transmute::<Weak<Inner>, usize>(self.inner) }
641 }
642
643 unsafe fn from_usize(val: usize) -> HandlePriv {
644 let inner = mem::transmute::<usize, Weak<Inner>>(val);
645 HandlePriv { inner }
646 }
647
648 fn inner(&self) -> Option<Arc<Inner>> {
649 self.inner.upgrade()
650 }
651}
652
653impl fmt::Debug for HandlePriv {
654 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
655 write!(f, "HandlePriv")
656 }
657}
658
659// ===== impl Inner =====
660
661impl Inner {
662 /// Register an I/O resource with the reactor.
663 ///
664 /// The registration token is returned.
665 fn add_source(&self, source: &dyn Evented) -> io::Result<usize> {
666 // Get an ABA guard value
667 let aba_guard = self.next_aba_guard.fetch_add(1 << TOKEN_SHIFT, Relaxed);
668
669 let key = {
670 // Block to contain the write lock
671 let mut io_dispatch = self.io_dispatch.write();
672
673 if io_dispatch.len() == MAX_SOURCES {
674 return Err(io::Error::new(
675 io::ErrorKind::Other,
676 "reactor at max \
677 registered I/O resources",
678 ));
679 }
680
681 io_dispatch.insert(ScheduledIo {
682 aba_guard,
683 readiness: AtomicUsize::new(0),
684 reader: AtomicTask::new(),
685 writer: AtomicTask::new(),
686 })
687 };
688
689 let token = aba_guard | key;
690 debug!("adding I/O source: {}", token);
691
692 self.io.register(
693 source,
694 mio::Token(token),
695 mio::Ready::all(),
696 mio::PollOpt::edge(),
697 )?;
698
699 Ok(key)
700 }
701
702 /// Deregisters an I/O resource from the reactor.
703 fn deregister_source(&self, source: &dyn Evented) -> io::Result<()> {
704 self.io.deregister(source)
705 }
706
707 fn drop_source(&self, token: usize) {
708 debug!("dropping I/O source: {}", token);
709 self.io_dispatch.write().remove(token);
710 }
711
712 /// Registers interest in the I/O resource associated with `token`.
713 fn register(&self, token: usize, dir: Direction, t: Task) {
714 debug!("scheduling {:?} for: {}", dir, token);
715 let io_dispatch = self.io_dispatch.read();
716 let sched = io_dispatch.get(token).unwrap();
717
718 let (task, ready) = match dir {
719 Direction::Read => (&sched.reader, !mio::Ready::writable()),
720 Direction::Write => (&sched.writer, mio::Ready::writable()),
721 };
722
723 task.register_task(t);
724
725 if sched.readiness.load(SeqCst) & ready.as_usize() != 0 {
726 task.notify();
727 }
728 }
729}
730
731impl Drop for Inner {
732 fn drop(&mut self) {
733 // When a reactor is dropped it needs to wake up all blocked tasks as
734 // they'll never receive a notification, and all connected I/O objects
735 // will start returning errors pretty quickly.
736 let io = self.io_dispatch.read();
737 for (_, io) in io.iter() {
738 io.writer.notify();
739 io.reader.notify();
740 }
741 }
742}
743
744impl Direction {
745 fn mask(&self) -> mio::Ready {
746 match *self {
747 Direction::Read => {
748 // Everything except writable is signaled through read.
749 mio::Ready::all() - mio::Ready::writable()
750 }
751 Direction::Write => mio::Ready::writable() | platform::hup(),
752 }
753 }
754}
755
756impl Drop for DefaultGuard {
757 fn drop(&mut self) {
758 let _ = CURRENT_REACTOR.try_with(|current| {
759 let mut current = current.borrow_mut();
760 *current = None;
761 });
762 }
763}
764
765#[cfg(unix)]
766mod platform {
767 use mio::unix::UnixReady;
768 use mio::Ready;
769
770 pub fn hup() -> Ready {
771 UnixReady::hup().into()
772 }
773
774 pub fn is_hup(ready: &Ready) -> bool {
775 UnixReady::from(*ready).is_hup()
776 }
777}
778
779#[cfg(windows)]
780mod platform {
781 use mio::Ready;
782
783 pub fn hup() -> Ready {
784 Ready::empty()
785 }
786
787 pub fn is_hup(_: &Ready) -> bool {
788 false
789 }
790}
791
792// ===== impl SetFallbackError =====
793
794impl fmt::Display for SetFallbackError {
795 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
796 write!(fmt, "{}", self.description())
797 }
798}
799
800impl Error for SetFallbackError {
801 fn description(&self) -> &str {
802 "attempted to set fallback reactor while already configured"
803 }
804}