pub trait Ord: Eq + PartialOrd {
// Required method
fn cmp(&self, other: &Self) -> Ordering;
// Provided methods
fn max(self, other: Self) -> Self
where Self: Sized { ... }
fn min(self, other: Self) -> Self
where Self: Sized { ... }
fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized { ... }
}
std
only.Expand description
Trait for types that form a total order.
Implementations must be consistent with the PartialOrd
implementation, and ensure max
,
min
, and clamp
are consistent with cmp
:
partial_cmp(a, b) == Some(cmp(a, b))
.max(a, b) == max_by(a, b, cmp)
(ensured by the default implementation).min(a, b) == min_by(a, b, cmp)
(ensured by the default implementation).- For
a.clamp(min, max)
, see the method docs (ensured by the default implementation).
Violating these requirements is a logic error. The behavior resulting from a logic error is not
specified, but users of the trait must ensure that such logic errors do not result in
undefined behavior. This means that unsafe
code must not rely on the correctness of these
methods.
§Corollaries
From the above and the requirements of PartialOrd
, it follows that for all a
, b
and c
:
- exactly one of
a < b
,a == b
ora > b
is true; and <
is transitive:a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
Mathematically speaking, the <
operator defines a strict weak order. In cases where ==
conforms to mathematical equality, it also defines a strict total order.
§Derivable
This trait can be used with #[derive]
.
When derive
d on structs, it will produce a
lexicographic ordering based on the
top-to-bottom declaration order of the struct’s members.
When derive
d on enums, variants are ordered primarily by their discriminants. Secondarily,
they are ordered by their fields. By default, the discriminant is smallest for variants at the
top, and largest for variants at the bottom. Here’s an example:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top,
Bottom,
}
assert!(E::Top < E::Bottom);
However, manually setting the discriminants can override this default behavior:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top = 2,
Bottom = 1,
}
assert!(E::Bottom < E::Top);
§Lexicographical comparison
Lexicographical comparison is an operation with the following properties:
- Two sequences are compared element by element.
- The first mismatching element defines which sequence is lexicographically less or greater than the other.
- If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
- If two sequences have equivalent elements and are of the same length, then the sequences are lexicographically equal.
- An empty sequence is lexicographically less than any non-empty sequence.
- Two empty sequences are lexicographically equal.
§How can I implement Ord
?
Ord
requires that the type also be PartialOrd
, PartialEq
, and Eq
.
Because Ord
implies a stronger ordering relationship than PartialOrd
, and both Ord
and
PartialOrd
must agree, you must choose how to implement Ord
first. You can choose to
derive it, or implement it manually. If you derive it, you should derive all four traits. If you
implement it manually, you should manually implement all four traits, based on the
implementation of Ord
.
Here’s an example where you want to define the Character
comparison by health
and
experience
only, disregarding the field mana
:
use std::cmp::Ordering;
struct Character {
health: u32,
experience: u32,
mana: f32,
}
impl Ord for Character {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.experience
.cmp(&other.experience)
.then(self.health.cmp(&other.health))
}
}
impl PartialOrd for Character {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Character {
fn eq(&self, other: &Self) -> bool {
self.health == other.health && self.experience == other.experience
}
}
impl Eq for Character {}
If all you need is to slice::sort
a type by a field value, it can be simpler to use
slice::sort_by_key
.
§Examples of incorrect Ord
implementations
use std::cmp::Ordering;
#[derive(Debug)]
struct Character {
health: f32,
}
impl Ord for Character {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
if self.health < other.health {
Ordering::Less
} else if self.health > other.health {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
impl PartialOrd for Character {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Character {
fn eq(&self, other: &Self) -> bool {
self.health == other.health
}
}
impl Eq for Character {}
let a = Character { health: 4.5 };
let b = Character { health: f32::NAN };
// Mistake: floating-point values do not form a total order and using the built-in comparison
// operands to implement `Ord` irregardless of that reality does not change it. Use
// `f32::total_cmp` if you need a total order for floating-point values.
// Reflexivity requirement of `Ord` is not given.
assert!(a == a);
assert!(b != b);
// Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
// true, not both or neither.
assert_eq!((a < b) as u8 + (b < a) as u8, 0);
use std::cmp::Ordering;
#[derive(Debug)]
struct Character {
health: u32,
experience: u32,
}
impl PartialOrd for Character {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Character {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
if self.health < 50 {
self.health.cmp(&other.health)
} else {
self.experience.cmp(&other.experience)
}
}
}
// For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
// ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
impl PartialEq for Character {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for Character {}
let a = Character {
health: 3,
experience: 5,
};
let b = Character {
health: 10,
experience: 77,
};
let c = Character {
health: 143,
experience: 2,
};
// Mistake: The implementation of `Ord` compares different fields depending on the value of
// `self.health`, the resulting order is not total.
// Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
// c, by transitive property a must also be smaller than c.
assert!(a < b && b < c && c < a);
// Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
// true, not both or neither.
assert_eq!((a < c) as u8 + (c < a) as u8, 2);
The documentation of PartialOrd
contains further examples, for example it’s wrong for
PartialOrd
and PartialEq
to disagree.
Required Methods§
1.0.0 · Sourcefn cmp(&self, other: &Self) -> Ordering
fn cmp(&self, other: &Self) -> Ordering
This method returns an Ordering
between self
and other
.
By convention, self.cmp(&other)
returns the ordering matching the expression
self <operator> other
if true.
§Examples
use std::cmp::Ordering;
assert_eq!(5.cmp(&10), Ordering::Less);
assert_eq!(10.cmp(&5), Ordering::Greater);
assert_eq!(5.cmp(&5), Ordering::Equal);
Provided Methods§
1.21.0 · Sourcefn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values.
Returns the second argument if the comparison determines them to be equal.
§Examples
assert_eq!(1.max(2), 2);
assert_eq!(2.max(2), 2);
1.21.0 · Sourcefn min(self, other: Self) -> Selfwhere
Self: Sized,
fn min(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the minimum of two values.
Returns the first argument if the comparison determines them to be equal.
§Examples
assert_eq!(1.min(2), 1);
assert_eq!(2.min(2), 2);
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.
Implementors§
impl Ord for ExportIndex
impl Ord for ImportIndex
impl Ord for ModuleHash
impl Ord for Infallible
impl Ord for Ordering
impl Ord for AsciiChar
impl Ord for IpAddr
impl Ord for SocketAddr
impl Ord for ErrorKind
impl Ord for Panic
impl Ord for ArchivedIpAddr
impl Ord for ArchivedSocketAddr
impl Ord for bool
impl Ord for char
impl Ord for i8
impl Ord for i16
impl Ord for i32
impl Ord for i64
impl Ord for i128
impl Ord for isize
impl Ord for !
impl Ord for str
Implements ordering of strings.
Strings are ordered lexicographically by their byte values. This orders Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Sorting strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
impl Ord for u8
impl Ord for u16
impl Ord for u32
impl Ord for u64
impl Ord for u128
impl Ord for ()
impl Ord for usize
impl Ord for wasmer_types::Bytes
impl Ord for CustomSectionIndex
impl Ord for DataIndex
impl Ord for ElemIndex
impl Ord for FunctionIndex
impl Ord for GlobalIndex
impl Ord for LocalFunctionIndex
impl Ord for LocalGlobalIndex
impl Ord for LocalMemoryIndex
impl Ord for LocalTableIndex
impl Ord for MemoryIndex
impl Ord for Pages
impl Ord for SignatureIndex
impl Ord for TableIndex
impl Ord for TypeId
impl Ord for Error
impl Ord for PhantomPinned
impl Ord for Alignment
impl Ord for String
impl Ord for CString
impl Ord for CpuidResult
impl Ord for CStr
impl Ord for Ipv4Addr
impl Ord for Ipv6Addr
impl Ord for SocketAddrV4
impl Ord for SocketAddrV6
impl Ord for Duration
impl Ord for OsStr
impl Ord for OsString
impl Ord for Components<'_>
impl Ord for Path
impl Ord for PathBuf
impl Ord for PrefixComponent<'_>
impl Ord for Instant
impl Ord for SystemTime
impl Ord for bytes::bytes::Bytes
impl Ord for BytesMut
impl Ord for Failure
impl Ord for NonZeroI16_be
impl Ord for NonZeroI16_le
impl Ord for NonZeroI32_be
impl Ord for NonZeroI32_le
impl Ord for NonZeroI64_be
impl Ord for NonZeroI64_le
impl Ord for NonZeroI128_be
impl Ord for NonZeroI128_le
impl Ord for NonZeroU16_be
impl Ord for NonZeroU16_le
impl Ord for NonZeroU32_be
impl Ord for NonZeroU32_le
impl Ord for NonZeroU64_be
impl Ord for NonZeroU64_le
impl Ord for NonZeroU128_be
impl Ord for NonZeroU128_le
impl Ord for char_be
impl Ord for char_le
impl Ord for i16_be
impl Ord for i16_le
impl Ord for i32_be
impl Ord for i32_le
impl Ord for i64_be
impl Ord for i64_le
impl Ord for i128_be
impl Ord for i128_le
impl Ord for u16_be
impl Ord for u16_le
impl Ord for u32_be
impl Ord for u32_le
impl Ord for u64_be
impl Ord for u64_le
impl Ord for u128_be
impl Ord for u128_le
impl Ord for NonZeroI16_ube
impl Ord for NonZeroI16_ule
impl Ord for NonZeroI32_ube
impl Ord for NonZeroI32_ule
impl Ord for NonZeroI64_ube
impl Ord for NonZeroI64_ule
impl Ord for NonZeroI128_ube
impl Ord for NonZeroI128_ule
impl Ord for NonZeroU16_ube
impl Ord for NonZeroU16_ule
impl Ord for NonZeroU32_ube
impl Ord for NonZeroU32_ule
impl Ord for NonZeroU64_ube
impl Ord for NonZeroU64_ule
impl Ord for NonZeroU128_ube
impl Ord for NonZeroU128_ule
impl Ord for char_ube
impl Ord for char_ule
impl Ord for i16_ube
impl Ord for i16_ule
impl Ord for i32_ube
impl Ord for i32_ule
impl Ord for i64_ube
impl Ord for i64_ule
impl Ord for i128_ube
impl Ord for i128_ule
impl Ord for u16_ube
impl Ord for u16_ule
impl Ord for u32_ube
impl Ord for u32_ule
impl Ord for u64_ube
impl Ord for u64_ule
impl Ord for u128_ube
impl Ord for u128_ule
impl Ord for ArchivedCString
impl Ord for ArchivedIpv4Addr
impl Ord for ArchivedIpv6Addr
impl Ord for ArchivedSocketAddrV4
impl Ord for ArchivedSocketAddrV6
impl Ord for ArchivedOptionNonZeroI8
impl Ord for ArchivedOptionNonZeroI16
impl Ord for ArchivedOptionNonZeroI32
impl Ord for ArchivedOptionNonZeroI64
impl Ord for ArchivedOptionNonZeroI128
impl Ord for ArchivedOptionNonZeroU8
impl Ord for ArchivedOptionNonZeroU16
impl Ord for ArchivedOptionNonZeroU32
impl Ord for ArchivedOptionNonZeroU64
impl Ord for ArchivedOptionNonZeroU128
impl Ord for ArchivedString
impl Ord for ArchivedDuration
impl Ord for ATerm
impl Ord for B0
impl Ord for B1
impl Ord for Z0
impl Ord for Equal
impl Ord for Greater
impl Ord for Less
impl Ord for UTerm
impl<'a> Ord for Component<'a>
impl<'a> Ord for Prefix<'a>
impl<'a> Ord for Location<'a>
impl<A> Ord for &A
impl<A> Ord for &mut A
impl<B> Ord for Cow<'_, B>
impl<Dyn> Ord for wasmer_types::lib::std::ptr::DynMetadata<Dyn>where
Dyn: ?Sized,
impl<Dyn> Ord for ptr_meta::DynMetadata<Dyn>where
Dyn: ?Sized,
impl<F> Ord for Fwhere
F: FnPtr,
impl<K, V> Ord for indexmap::map::slice::Slice<K, V>
impl<K, V> Ord for Entry<K, V>
impl<K, V, A> Ord for BTreeMap<K, V, A>
impl<Ptr> Ord for Pin<Ptr>
impl<T0> Ord for ArchivedTuple1<T0>where
T0: Ord,
impl<T0, T1> Ord for ArchivedTuple2<T0, T1>
impl<T0, T1, T2> Ord for ArchivedTuple3<T0, T1, T2>
impl<T0, T1, T2, T3> Ord for ArchivedTuple4<T0, T1, T2, T3>
impl<T0, T1, T2, T3, T4> Ord for ArchivedTuple5<T0, T1, T2, T3, T4>
impl<T0, T1, T2, T3, T4, T5> Ord for ArchivedTuple6<T0, T1, T2, T3, T4, T5>
impl<T0, T1, T2, T3, T4, T5, T6> Ord for ArchivedTuple7<T0, T1, T2, T3, T4, T5, T6>
impl<T0, T1, T2, T3, T4, T5, T6, T7> Ord for ArchivedTuple8<T0, T1, T2, T3, T4, T5, T6, T7>
impl<T0, T1, T2, T3, T4, T5, T6, T7, T8> Ord for ArchivedTuple9<T0, T1, T2, T3, T4, T5, T6, T7, T8>
impl<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> Ord for ArchivedTuple10<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>
impl<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10> Ord for ArchivedTuple11<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>
impl<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11> Ord for ArchivedTuple12<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>
impl<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12> Ord for ArchivedTuple13<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12>
impl<T> Ord for Option<T>where
T: Ord,
impl<T> Ord for Poll<T>where
T: Ord,
impl<T> Ord for ArchivedOption<T>where
T: Ord,
impl<T> Ord for *const Twhere
T: ?Sized,
impl<T> Ord for *mut Twhere
T: ?Sized,
impl<T> Ord for [T]where
T: Ord,
Implements comparison of slices lexicographically.
impl<T> Ord for (T₁, T₂, …, Tₙ)
This trait is implemented for tuples up to twelve items long.
impl<T> Ord for Cell<T>
impl<T> Ord for RefCell<T>
impl<T> Ord for PhantomData<T>where
T: ?Sized,
impl<T> Ord for ManuallyDrop<T>
impl<T> Ord for NonNull<T>where
T: ?Sized,
impl<T> Ord for NonZero<T>where
T: ZeroablePrimitive + Ord,
impl<T> Ord for Saturating<T>where
T: Ord,
impl<T> Ord for Wrapping<T>where
T: Ord,
impl<T> Ord for indexmap::set::slice::Slice<T>where
T: Ord,
impl<T> Ord for ArchivedBox<T>
impl<T> Ord for ArchivedOptionBox<T>
impl<T> Ord for ArchivedVec<T>where
T: Ord,
impl<T> Ord for Reverse<T>where
T: Ord,
impl<T, A> Ord for Box<T, A>
impl<T, A> Ord for Rc<T, A>
impl<T, A> Ord for UniqueRc<T, A>
impl<T, A> Ord for Arc<T, A>
impl<T, A> Ord for Vec<T, A>
Implements ordering of vectors, lexicographically.
impl<T, A> Ord for BTreeSet<T, A>
impl<T, A> Ord for LinkedList<T, A>
impl<T, A> Ord for VecDeque<T, A>
impl<T, E> Ord for Result<T, E>
impl<T, E> Ord for ArchivedResult<T, E>
impl<T, F> Ord for ArchivedRc<T, F>
impl<T, N> Ord for GenericArray<T, N>where
T: Ord,
N: ArrayLength<T>,
impl<T, N> Ord for NichedOption<T, N>
impl<T, const N: usize> Ord for [T; N]where
T: Ord,
Implements comparison of arrays lexicographically.