Enum wayland_protocols::unstable::xdg_shell::v6::client::zxdg_positioner_v6::Request
source · [−]#[non_exhaustive]
pub enum Request {
Destroy,
SetSize {
width: i32,
height: i32,
},
SetAnchorRect {
x: i32,
y: i32,
width: i32,
height: i32,
},
SetAnchor {
anchor: Anchor,
},
SetGravity {
gravity: Gravity,
},
SetConstraintAdjustment {
constraint_adjustment: u32,
},
SetOffset {
x: i32,
y: i32,
},
}
Variants (Non-exhaustive)
This enum is marked as non-exhaustive
Destroy
destroy the xdg_positioner object
Notify the compositor that the xdg_positioner will no longer be used.
This is a destructor, once sent this object cannot be used any longer.
SetSize
set the size of the to-be positioned rectangle
Set the size of the surface that is to be positioned with the positioner object. The size is in surface-local coordinates and corresponds to the window geometry. See xdg_surface.set_window_geometry.
If a zero or negative size is set the invalid_input error is raised.
SetAnchorRect
set the anchor rectangle within the parent surface
Specify the anchor rectangle within the parent surface that the child surface will be placed relative to. The rectangle is relative to the window geometry as defined by xdg_surface.set_window_geometry of the parent surface. The rectangle must be at least 1x1 large.
When the xdg_positioner object is used to position a child surface, the anchor rectangle may not extend outside the window geometry of the positioned child’s parent surface.
If a zero or negative size is set the invalid_input error is raised.
SetAnchor
Fields
anchor: Anchor
set anchor rectangle anchor edges
Defines a set of edges for the anchor rectangle. These are used to derive an anchor point that the child surface will be positioned relative to. If two orthogonal edges are specified (e.g. ‘top’ and ‘left’), then the anchor point will be the intersection of the edges (e.g. the top left position of the rectangle); otherwise, the derived anchor point will be centered on the specified edge, or in the center of the anchor rectangle if no edge is specified.
If two parallel anchor edges are specified (e.g. ‘left’ and ‘right’), the invalid_input error is raised.
SetGravity
Fields
gravity: Gravity
set child surface gravity
Defines in what direction a surface should be positioned, relative to the anchor point of the parent surface. If two orthogonal gravities are specified (e.g. ‘bottom’ and ‘right’), then the child surface will be placed in the specified direction; otherwise, the child surface will be centered over the anchor point on any axis that had no gravity specified.
If two parallel gravities are specified (e.g. ‘left’ and ‘right’), the invalid_input error is raised.
SetConstraintAdjustment
Fields
constraint_adjustment: u32
set the adjustment to be done when constrained
Specify how the window should be positioned if the originally intended position caused the surface to be constrained, meaning at least partially outside positioning boundaries set by the compositor. The adjustment is set by constructing a bitmask describing the adjustment to be made when the surface is constrained on that axis.
If no bit for one axis is set, the compositor will assume that the child surface should not change its position on that axis when constrained.
If more than one bit for one axis is set, the order of how adjustments are applied is specified in the corresponding adjustment descriptions.
The default adjustment is none.
SetOffset
set surface position offset
Specify the surface position offset relative to the position of the anchor on the anchor rectangle and the anchor on the surface. For example if the anchor of the anchor rectangle is at (x, y), the surface has the gravity bottom|right, and the offset is (ox, oy), the calculated surface position will be (x + ox, y + oy). The offset position of the surface is the one used for constraint testing. See set_constraint_adjustment.
An example use case is placing a popup menu on top of a user interface element, while aligning the user interface element of the parent surface with some user interface element placed somewhere in the popup surface.
Trait Implementations
sourceimpl MessageGroup for Request
impl MessageGroup for Request
sourceconst MESSAGES: &'static [MessageDesc] = _
const MESSAGES: &'static [MessageDesc] = _
Wire representation of this MessageGroup
type Map = ProxyMap
type Map = ProxyMap
The wrapper type for ObjectMap allowing the mapping of Object and NewId arguments to the object map during parsing. Read more
sourcefn is_destructor(&self) -> bool
fn is_destructor(&self) -> bool
Whether this message is a destructor Read more
sourcefn child<Meta: ObjectMetadata>(
opcode: u16,
version: u32,
meta: &Meta
) -> Option<Object<Meta>>
fn child<Meta: ObjectMetadata>(
opcode: u16,
version: u32,
meta: &Meta
) -> Option<Object<Meta>>
Retrieve the child Object
associated with this message if any
sourcefn from_raw(msg: Message, map: &mut Self::Map) -> Result<Self, ()>
fn from_raw(msg: Message, map: &mut Self::Map) -> Result<Self, ()>
Construct a message from its raw representation
sourceunsafe fn from_raw_c(
obj: *mut c_void,
opcode: u32,
args: *const wl_argument
) -> Result<Request, ()>
unsafe fn from_raw_c(
obj: *mut c_void,
opcode: u32,
args: *const wl_argument
) -> Result<Request, ()>
Construct a message of this group from its C representation Read more
sourcefn as_raw_c_in<F, T>(self, f: F) -> T where
F: FnOnce(u32, &mut [wl_argument]) -> T,
fn as_raw_c_in<F, T>(self, f: F) -> T where
F: FnOnce(u32, &mut [wl_argument]) -> T,
Build a C representation of this message Read more
Auto Trait Implementations
impl RefUnwindSafe for Request
impl Send for Request
impl Sync for Request
impl Unpin for Request
impl UnwindSafe for Request
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any,
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
. Read more
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
. Read more
fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert &Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s. Read more
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert &mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s. Read more