pub struct NistP256;
Expand description
NIST P-256 elliptic curve.
This curve is also known as prime256v1 (ANSI X9.62) and secp256r1 (SECG) and is specified in NIST SP 800-186: Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain Parameters.
It’s included in the US National Security Agency’s “Suite B” and is widely used in protocols like TLS and the associated X.509 PKI.
Its equation is y² = x³ - 3x + b
over a ~256-bit prime field where b
is
the “verifiably random”† constant:
b = 41058363725152142129326129780047268409114441015993725554835256314039467401291
† NOTE: the specific origins of this constant have never been fully disclosed (it is the SHA-1 digest of an unknown NSA-selected constant)
Trait Implementations§
source§impl Curve for NistP256
impl Curve for NistP256
source§impl CurveAlgorithm for NistP256
impl CurveAlgorithm for NistP256
source§fn asymmetric_algorithm() -> Algorithm
fn asymmetric_algorithm() -> Algorithm
source§impl DigestPrimitive for NistP256
Available on crate feature sha256
only.
impl DigestPrimitive for NistP256
sha256
only.source§impl Ord for NistP256
impl Ord for NistP256
source§impl PartialEq<NistP256> for NistP256
impl PartialEq<NistP256> for NistP256
source§impl PartialOrd<NistP256> for NistP256
impl PartialOrd<NistP256> for NistP256
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moresource§impl PointCompaction for NistP256
impl PointCompaction for NistP256
source§const COMPACT_POINTS: bool = false
const COMPACT_POINTS: bool = false
NIST P-256 points are typically uncompressed.
source§impl PointCompression for NistP256
impl PointCompression for NistP256
source§const COMPRESS_POINTS: bool = false
const COMPRESS_POINTS: bool = false
NIST P-256 points are typically uncompressed.
source§impl PrimeCurveArithmetic for NistP256
impl PrimeCurveArithmetic for NistP256
§type CurveGroup = ProjectivePoint<NistP256>
type CurveGroup = ProjectivePoint<NistP256>
source§impl PrimeCurveParams for NistP256
impl PrimeCurveParams for NistP256
Adapted from NIST SP 800-186 § G.1.2: Curve P-256.
source§const EQUATION_A: FieldElement = FieldElement::from_u64(3).neg()
const EQUATION_A: FieldElement = FieldElement::from_u64(3).neg()
a = -3
source§const GENERATOR: (FieldElement, FieldElement) = (FieldElement::from_hex("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"),
FieldElement::from_hex("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"))
const GENERATOR: (FieldElement, FieldElement) = (FieldElement::from_hex("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"), FieldElement::from_hex("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"))
Base point of P-256.
Defined in NIST SP 800-186 § G.1.2:
Gₓ = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296
Gᵧ = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5
§type FieldElement = FieldElement
type FieldElement = FieldElement
§type PointArithmetic = EquationAIsMinusThree
type PointArithmetic = EquationAIsMinusThree
source§const EQUATION_B: FieldElement = FieldElement::from_hex("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b")
const EQUATION_B: FieldElement = FieldElement::from_hex("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b")
b
in the curve equation.impl Copy for NistP256
impl Eq for NistP256
impl PrimeCurve for NistP256
impl StructuralEq for NistP256
impl StructuralPartialEq for NistP256
Auto Trait Implementations§
impl RefUnwindSafe for NistP256
impl Send for NistP256
impl Sync for NistP256
impl Unpin for NistP256
impl UnwindSafe for NistP256
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<C> ValidatePublicKey for Cwhere
C: CurveArithmetic,
<C as CurveArithmetic>::AffinePoint: FromEncodedPoint<C> + ToEncodedPoint<C>,
<C as Curve>::FieldBytesSize: ModulusSize,
impl<C> ValidatePublicKey for Cwhere C: CurveArithmetic, <C as CurveArithmetic>::AffinePoint: FromEncodedPoint<C> + ToEncodedPoint<C>, <C as Curve>::FieldBytesSize: ModulusSize,
§fn validate_public_key(
secret_key: &SecretKey<C>,
public_key: &EncodedPoint<<C as Curve>::FieldBytesSize>
) -> Result<(), Error>
fn validate_public_key( secret_key: &SecretKey<C>, public_key: &EncodedPoint<<C as Curve>::FieldBytesSize> ) -> Result<(), Error>
EncodedPoint
is a valid public key for the
provided secret value.