zerocopy_derive/
lib.rs

1// Copyright 2019 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9//! Derive macros for [zerocopy]'s traits.
10//!
11//! [zerocopy]: https://docs.rs/zerocopy
12
13// Sometimes we want to use lints which were added after our MSRV.
14// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
15// this attribute, any unknown lint would cause a CI failure when testing with
16// our MSRV.
17#![allow(unknown_lints)]
18#![deny(renamed_and_removed_lints)]
19#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
20#![deny(
21    rustdoc::bare_urls,
22    rustdoc::broken_intra_doc_links,
23    rustdoc::invalid_codeblock_attributes,
24    rustdoc::invalid_html_tags,
25    rustdoc::invalid_rust_codeblocks,
26    rustdoc::missing_crate_level_docs,
27    rustdoc::private_intra_doc_links
28)]
29#![recursion_limit = "128"]
30
31mod r#enum;
32mod ext;
33#[cfg(test)]
34mod output_tests;
35mod repr;
36
37use proc_macro2::{TokenStream, TokenTree};
38use quote::ToTokens;
39
40use {
41    proc_macro2::Span,
42    quote::quote,
43    syn::{
44        parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
45        ExprUnary, GenericParam, Ident, Lit, Path, Type, UnOp, WherePredicate,
46    },
47};
48
49use {crate::ext::*, crate::repr::*};
50
51// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
52// made better if we could add multiple lines of error output like this:
53//
54// error: unsupported representation
55//   --> enum.rs:28:8
56//    |
57// 28 | #[repr(transparent)]
58//    |
59// help: required by the derive of FromBytes
60//
61// Instead, we have more verbose error messages like "unsupported representation
62// for deriving FromZeros, FromBytes, IntoBytes, or Unaligned on an enum"
63//
64// This will probably require Span::error
65// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
66// which is currently unstable. Revisit this once it's stable.
67
68/// Defines a derive function named `$outer` which parses its input
69/// `TokenStream` as a `DeriveInput` and then invokes the `$inner` function.
70///
71/// Note that the separate `$outer` parameter is required - proc macro functions
72/// are currently required to live at the crate root, and so the caller must
73/// specify the name in order to avoid name collisions.
74macro_rules! derive {
75    ($trait:ident => $outer:ident => $inner:ident) => {
76        #[proc_macro_derive($trait)]
77        pub fn $outer(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
78            let ast = syn::parse_macro_input!(ts as DeriveInput);
79            $inner(&ast, Trait::$trait).into_ts().into()
80        }
81    };
82}
83
84trait IntoTokenStream {
85    fn into_ts(self) -> TokenStream;
86}
87
88impl IntoTokenStream for TokenStream {
89    fn into_ts(self) -> TokenStream {
90        self
91    }
92}
93
94impl IntoTokenStream for Result<TokenStream, Error> {
95    fn into_ts(self) -> TokenStream {
96        match self {
97            Ok(ts) => ts,
98            Err(err) => err.to_compile_error(),
99        }
100    }
101}
102
103derive!(KnownLayout => derive_known_layout => derive_known_layout_inner);
104derive!(Immutable => derive_no_cell => derive_no_cell_inner);
105derive!(TryFromBytes => derive_try_from_bytes => derive_try_from_bytes_inner);
106derive!(FromZeros => derive_from_zeros => derive_from_zeros_inner);
107derive!(FromBytes => derive_from_bytes => derive_from_bytes_inner);
108derive!(IntoBytes => derive_into_bytes => derive_into_bytes_inner);
109derive!(Unaligned => derive_unaligned => derive_unaligned_inner);
110derive!(ByteHash => derive_hash => derive_hash_inner);
111derive!(ByteEq => derive_eq => derive_eq_inner);
112
113/// Deprecated: prefer [`FromZeros`] instead.
114#[deprecated(since = "0.8.0", note = "`FromZeroes` was renamed to `FromZeros`")]
115#[doc(hidden)]
116#[proc_macro_derive(FromZeroes)]
117pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
118    derive_from_zeros(ts)
119}
120
121/// Deprecated: prefer [`IntoBytes`] instead.
122#[deprecated(since = "0.8.0", note = "`AsBytes` was renamed to `IntoBytes`")]
123#[doc(hidden)]
124#[proc_macro_derive(AsBytes)]
125pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
126    derive_into_bytes(ts)
127}
128
129fn derive_known_layout_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
130    let is_repr_c_struct = match &ast.data {
131        Data::Struct(..) => {
132            let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
133            if repr.is_c() {
134                Some(repr)
135            } else {
136                None
137            }
138        }
139        Data::Enum(..) | Data::Union(..) => None,
140    };
141
142    let fields = ast.data.fields();
143
144    let (self_bounds, inner_extras, outer_extras) = if let (
145        Some(repr),
146        Some((trailing_field, leading_fields)),
147    ) = (is_repr_c_struct, fields.split_last())
148    {
149        let (_vis, trailing_field_name, trailing_field_ty) = trailing_field;
150        let leading_fields_tys = leading_fields.iter().map(|(_vis, _name, ty)| ty);
151
152        let core_path = quote!(::zerocopy::util::macro_util::core_reexport);
153        let repr_align = repr
154            .get_align()
155            .map(|align| {
156                let align = align.t.get();
157                quote!(#core_path::num::NonZeroUsize::new(#align as usize))
158            })
159            .unwrap_or_else(|| quote!(#core_path::option::Option::None));
160        let repr_packed = repr
161            .get_packed()
162            .map(|packed| {
163                let packed = packed.get();
164                quote!(#core_path::num::NonZeroUsize::new(#packed as usize))
165            })
166            .unwrap_or_else(|| quote!(#core_path::option::Option::None));
167
168        let make_methods = |trailing_field_ty| {
169            quote! {
170                // SAFETY:
171                // - The returned pointer has the same address and provenance as
172                //   `bytes`:
173                //   - The recursive call to `raw_from_ptr_len` preserves both
174                //     address and provenance.
175                //   - The `as` cast preserves both address and provenance.
176                //   - `NonNull::new_unchecked` preserves both address and
177                //     provenance.
178                // - If `Self` is a slice DST, the returned pointer encodes
179                //   `elems` elements in the trailing slice:
180                //   - This is true of the recursive call to `raw_from_ptr_len`.
181                //   - `trailing.as_ptr() as *mut Self` preserves trailing slice
182                //     element count [1].
183                //   - `NonNull::new_unchecked` preserves trailing slice element
184                //     count.
185                //
186                // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast:
187                //
188                //   `*const T`` / `*mut T` can be cast to `*const U` / `*mut U`
189                //   with the following behavior:
190                //     ...
191                //     - If `T` and `U` are both unsized, the pointer is also
192                //       returned unchanged. In particular, the metadata is
193                //       preserved exactly.
194                //
195                //       For instance, a cast from `*const [T]` to `*const [U]`
196                //       preserves the number of elements. ... The same holds
197                //       for str and any compound type whose unsized tail is a
198                //       slice type, such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
199                #[inline(always)]
200                fn raw_from_ptr_len(
201                    bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
202                    meta: Self::PointerMetadata,
203                ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self> {
204                    use ::zerocopy::KnownLayout;
205                    let trailing = <#trailing_field_ty as KnownLayout>::raw_from_ptr_len(bytes, meta);
206                    let slf = trailing.as_ptr() as *mut Self;
207                    // SAFETY: Constructed from `trailing`, which is non-null.
208                    unsafe { ::zerocopy::util::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
209                }
210
211                #[inline(always)]
212                fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
213                    <#trailing_field_ty>::pointer_to_metadata(ptr as *mut _)
214                }
215            }
216        };
217
218        let inner_extras = {
219            let leading_fields_tys = leading_fields_tys.clone();
220            let methods = make_methods(*trailing_field_ty);
221            let (_, ty_generics, _) = ast.generics.split_for_impl();
222
223            quote!(
224                type PointerMetadata = <#trailing_field_ty as ::zerocopy::KnownLayout>::PointerMetadata;
225
226                type MaybeUninit = __ZerocopyKnownLayoutMaybeUninit #ty_generics;
227
228                // SAFETY: `LAYOUT` accurately describes the layout of `Self`.
229                // The layout of `Self` is reflected using a sequence of
230                // invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
231                // The documentation of these items vows that invocations in
232                // this manner will acurately describe a type, so long as:
233                //
234                //  - that type is `repr(C)`,
235                //  - its fields are enumerated in the order they appear,
236                //  - the presence of `repr_align` and `repr_packed` are correctly accounted for.
237                //
238                // We respect all three of these preconditions here. This
239                // expansion is only used if `is_repr_c_struct`, we enumerate
240                // the fields in order, and we extract the values of `align(N)`
241                // and `packed(N)`.
242                const LAYOUT: ::zerocopy::DstLayout = {
243                    use ::zerocopy::util::macro_util::core_reexport::num::NonZeroUsize;
244                    use ::zerocopy::{DstLayout, KnownLayout};
245
246                    let repr_align = #repr_align;
247                    let repr_packed = #repr_packed;
248
249                    DstLayout::new_zst(repr_align)
250                        #(.extend(DstLayout::for_type::<#leading_fields_tys>(), repr_packed))*
251                        .extend(<#trailing_field_ty as KnownLayout>::LAYOUT, repr_packed)
252                        .pad_to_align()
253                };
254
255                #methods
256            )
257        };
258
259        let outer_extras = {
260            let ident = &ast.ident;
261            let vis = &ast.vis;
262            let params = &ast.generics.params;
263            let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
264
265            let predicates = if let Some(where_clause) = where_clause {
266                where_clause.predicates.clone()
267            } else {
268                Default::default()
269            };
270
271            // Generate a valid ident for a type-level handle to a field of a
272            // given `name`.
273            let field_index =
274                |name| Ident::new(&format!("__Zerocopy_Field_{}", name), ident.span());
275
276            let field_indices: Vec<_> =
277                fields.iter().map(|(_vis, name, _ty)| field_index(name)).collect();
278
279            // Define the collection of type-level field handles.
280            let field_defs = field_indices.iter().zip(&fields).map(|(idx, (vis, _, _))| {
281                quote! {
282                    #[allow(non_camel_case_types)]
283                    #vis struct #idx;
284                }
285            });
286
287            let field_impls = field_indices.iter().zip(&fields).map(|(idx, (_, _, ty))| quote! {
288                // SAFETY: `#ty` is the type of `#ident`'s field at `#idx`.
289                unsafe impl #impl_generics ::zerocopy::util::macro_util::Field<#idx> for #ident #ty_generics
290                where
291                    #predicates
292                {
293                    type Type = #ty;
294                }
295            });
296
297            let trailing_field_index = field_index(trailing_field_name);
298            let leading_field_indices =
299                leading_fields.iter().map(|(_vis, name, _ty)| field_index(name));
300
301            let trailing_field_ty = quote! {
302                <#ident #ty_generics as
303                    ::zerocopy::util::macro_util::Field<#trailing_field_index>
304                >::Type
305            };
306
307            let methods = make_methods(&parse_quote! {
308                <#trailing_field_ty as ::zerocopy::KnownLayout>::MaybeUninit
309            });
310
311            quote! {
312                #(#field_defs)*
313
314                #(#field_impls)*
315
316                // SAFETY: This has the same layout as the derive target type,
317                // except that it admits uninit bytes. This is ensured by using
318                // the same repr as the target type, and by using field types
319                // which have the same layout as the target type's fields,
320                // except that they admit uninit bytes. We indirect through
321                // `Field` to ensure that occurrences of `Self` resolve to
322                // `#ty`, not `__ZerocopyKnownLayoutMaybeUninit` (see #2116).
323                #repr
324                #[doc(hidden)]
325                // Required on some rustc versions due to a lint that is only
326                // triggered when `derive(KnownLayout)` is applied to `repr(C)`
327                // structs that are generated by macros. See #2177 for details.
328                #[allow(private_bounds)]
329                #vis struct __ZerocopyKnownLayoutMaybeUninit<#params> (
330                    #(::zerocopy::util::macro_util::core_reexport::mem::MaybeUninit<
331                        <#ident #ty_generics as
332                            ::zerocopy::util::macro_util::Field<#leading_field_indices>
333                        >::Type
334                    >,)*
335                    // NOTE(#2302): We wrap in `ManuallyDrop` here in case the
336                    // type we're operating on is both generic and
337                    // `repr(packed)`. In that case, Rust needs to know that the
338                    // type is *either* `Sized` or has a trivial `Drop`.
339                    // `ManuallyDrop` has a trivial `Drop`, and so satisfies
340                    // this requirement.
341                    ::zerocopy::util::macro_util::core_reexport::mem::ManuallyDrop<
342                        <#trailing_field_ty as ::zerocopy::KnownLayout>::MaybeUninit
343                    >
344                )
345                where
346                    #trailing_field_ty: ::zerocopy::KnownLayout,
347                    #predicates;
348
349                // SAFETY: We largely defer to the `KnownLayout` implementation on
350                // the derive target type (both by using the same tokens, and by
351                // deferring to impl via type-level indirection). This is sound,
352                // since  `__ZerocopyKnownLayoutMaybeUninit` is guaranteed to
353                // have the same layout as the derive target type, except that
354                // `__ZerocopyKnownLayoutMaybeUninit` admits uninit bytes.
355                unsafe impl #impl_generics ::zerocopy::KnownLayout for __ZerocopyKnownLayoutMaybeUninit #ty_generics
356                where
357                    #trailing_field_ty: ::zerocopy::KnownLayout,
358                    #predicates
359                {
360                    #[allow(clippy::missing_inline_in_public_items)]
361                    fn only_derive_is_allowed_to_implement_this_trait() {}
362
363                    type PointerMetadata = <#ident #ty_generics as ::zerocopy::KnownLayout>::PointerMetadata;
364
365                    type MaybeUninit = Self;
366
367                    const LAYOUT: ::zerocopy::DstLayout = <#ident #ty_generics as ::zerocopy::KnownLayout>::LAYOUT;
368
369                    #methods
370                }
371            }
372        };
373
374        (SelfBounds::None, inner_extras, Some(outer_extras))
375    } else {
376        // For enums, unions, and non-`repr(C)` structs, we require that
377        // `Self` is sized, and as a result don't need to reason about the
378        // internals of the type.
379        (
380            SelfBounds::SIZED,
381            quote!(
382                type PointerMetadata = ();
383                type MaybeUninit =
384                    ::zerocopy::util::macro_util::core_reexport::mem::MaybeUninit<Self>;
385
386                // SAFETY: `LAYOUT` is guaranteed to accurately describe the
387                // layout of `Self`, because that is the documented safety
388                // contract of `DstLayout::for_type`.
389                const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();
390
391                // SAFETY: `.cast` preserves address and provenance.
392                //
393                // TODO(#429): Add documentation to `.cast` that promises that
394                // it preserves provenance.
395                #[inline(always)]
396                fn raw_from_ptr_len(
397                    bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
398                    _meta: (),
399                ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self>
400                {
401                    bytes.cast::<Self>()
402                }
403
404                #[inline(always)]
405                fn pointer_to_metadata(_ptr: *mut Self) -> () {}
406            ),
407            None,
408        )
409    };
410
411    Ok(match &ast.data {
412        Data::Struct(strct) => {
413            let require_trait_bound_on_field_types = if self_bounds == SelfBounds::SIZED {
414                FieldBounds::None
415            } else {
416                FieldBounds::TRAILING_SELF
417            };
418
419            // A bound on the trailing field is required, since structs are
420            // unsized if their trailing field is unsized. Reflecting the layout
421            // of an usized trailing field requires that the field is
422            // `KnownLayout`.
423            impl_block(
424                ast,
425                strct,
426                Trait::KnownLayout,
427                require_trait_bound_on_field_types,
428                self_bounds,
429                None,
430                Some(inner_extras),
431                outer_extras,
432            )
433        }
434        Data::Enum(enm) => {
435            // A bound on the trailing field is not required, since enums cannot
436            // currently be unsized.
437            impl_block(
438                ast,
439                enm,
440                Trait::KnownLayout,
441                FieldBounds::None,
442                SelfBounds::SIZED,
443                None,
444                Some(inner_extras),
445                outer_extras,
446            )
447        }
448        Data::Union(unn) => {
449            // A bound on the trailing field is not required, since unions
450            // cannot currently be unsized.
451            impl_block(
452                ast,
453                unn,
454                Trait::KnownLayout,
455                FieldBounds::None,
456                SelfBounds::SIZED,
457                None,
458                Some(inner_extras),
459                outer_extras,
460            )
461        }
462    })
463}
464
465fn derive_no_cell_inner(ast: &DeriveInput, _top_level: Trait) -> TokenStream {
466    match &ast.data {
467        Data::Struct(strct) => impl_block(
468            ast,
469            strct,
470            Trait::Immutable,
471            FieldBounds::ALL_SELF,
472            SelfBounds::None,
473            None,
474            None,
475            None,
476        ),
477        Data::Enum(enm) => impl_block(
478            ast,
479            enm,
480            Trait::Immutable,
481            FieldBounds::ALL_SELF,
482            SelfBounds::None,
483            None,
484            None,
485            None,
486        ),
487        Data::Union(unn) => impl_block(
488            ast,
489            unn,
490            Trait::Immutable,
491            FieldBounds::ALL_SELF,
492            SelfBounds::None,
493            None,
494            None,
495            None,
496        ),
497    }
498}
499
500fn derive_try_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
501    match &ast.data {
502        Data::Struct(strct) => derive_try_from_bytes_struct(ast, strct, top_level),
503        Data::Enum(enm) => derive_try_from_bytes_enum(ast, enm, top_level),
504        Data::Union(unn) => Ok(derive_try_from_bytes_union(ast, unn, top_level)),
505    }
506}
507
508fn derive_from_zeros_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
509    let try_from_bytes = derive_try_from_bytes_inner(ast, top_level)?;
510    let from_zeros = match &ast.data {
511        Data::Struct(strct) => derive_from_zeros_struct(ast, strct),
512        Data::Enum(enm) => derive_from_zeros_enum(ast, enm)?,
513        Data::Union(unn) => derive_from_zeros_union(ast, unn),
514    };
515    Ok(IntoIterator::into_iter([try_from_bytes, from_zeros]).collect())
516}
517
518fn derive_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
519    let from_zeros = derive_from_zeros_inner(ast, top_level)?;
520    let from_bytes = match &ast.data {
521        Data::Struct(strct) => derive_from_bytes_struct(ast, strct),
522        Data::Enum(enm) => derive_from_bytes_enum(ast, enm)?,
523        Data::Union(unn) => derive_from_bytes_union(ast, unn),
524    };
525
526    Ok(IntoIterator::into_iter([from_zeros, from_bytes]).collect())
527}
528
529fn derive_into_bytes_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
530    match &ast.data {
531        Data::Struct(strct) => derive_into_bytes_struct(ast, strct),
532        Data::Enum(enm) => derive_into_bytes_enum(ast, enm),
533        Data::Union(unn) => derive_into_bytes_union(ast, unn),
534    }
535}
536
537fn derive_unaligned_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
538    match &ast.data {
539        Data::Struct(strct) => derive_unaligned_struct(ast, strct),
540        Data::Enum(enm) => derive_unaligned_enum(ast, enm),
541        Data::Union(unn) => derive_unaligned_union(ast, unn),
542    }
543}
544
545fn derive_hash_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
546    // This doesn't delegate to `impl_block` because `impl_block` assumes it is deriving a
547    // `zerocopy`-defined trait, and these trait impls share a common shape that `Hash` does not.
548    // In particular, `zerocopy` traits contain a method that only `zerocopy_derive` macros
549    // are supposed to implement, and `impl_block` generating this trait method is incompatible
550    // with `Hash`.
551    let type_ident = &ast.ident;
552    let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
553    let where_predicates = where_clause.map(|clause| &clause.predicates);
554    Ok(quote! {
555        // TODO(#553): Add a test that generates a warning when
556        // `#[allow(deprecated)]` isn't present.
557        #[allow(deprecated)]
558        // While there are not currently any warnings that this suppresses (that
559        // we're aware of), it's good future-proofing hygiene.
560        #[automatically_derived]
561        impl #impl_generics ::zerocopy::util::macro_util::core_reexport::hash::Hash for #type_ident #ty_generics
562        where
563            Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
564            #where_predicates
565        {
566            fn hash<H>(&self, state: &mut H)
567            where
568                H: ::zerocopy::util::macro_util::core_reexport::hash::Hasher,
569            {
570                ::zerocopy::util::macro_util::core_reexport::hash::Hasher::write(
571                    state,
572                    ::zerocopy::IntoBytes::as_bytes(self)
573                )
574            }
575
576            fn hash_slice<H>(data: &[Self], state: &mut H)
577            where
578                H: ::zerocopy::util::macro_util::core_reexport::hash::Hasher,
579            {
580                ::zerocopy::util::macro_util::core_reexport::hash::Hasher::write(
581                    state,
582                    ::zerocopy::IntoBytes::as_bytes(data)
583                )
584            }
585        }
586    })
587}
588
589fn derive_eq_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
590    // This doesn't delegate to `impl_block` because `impl_block` assumes it is deriving a
591    // `zerocopy`-defined trait, and these trait impls share a common shape that `Eq` does not.
592    // In particular, `zerocopy` traits contain a method that only `zerocopy_derive` macros
593    // are supposed to implement, and `impl_block` generating this trait method is incompatible
594    // with `Eq`.
595    let type_ident = &ast.ident;
596    let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
597    let where_predicates = where_clause.map(|clause| &clause.predicates);
598    Ok(quote! {
599        // TODO(#553): Add a test that generates a warning when
600        // `#[allow(deprecated)]` isn't present.
601        #[allow(deprecated)]
602        // While there are not currently any warnings that this suppresses (that
603        // we're aware of), it's good future-proofing hygiene.
604        #[automatically_derived]
605        impl #impl_generics ::zerocopy::util::macro_util::core_reexport::cmp::PartialEq for #type_ident #ty_generics
606        where
607            Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
608            #where_predicates
609        {
610            fn eq(&self, other: &Self) -> bool {
611                ::zerocopy::util::macro_util::core_reexport::cmp::PartialEq::eq(
612                    ::zerocopy::IntoBytes::as_bytes(self),
613                    ::zerocopy::IntoBytes::as_bytes(other),
614                )
615            }
616        }
617
618        // TODO(#553): Add a test that generates a warning when
619        // `#[allow(deprecated)]` isn't present.
620        #[allow(deprecated)]
621        // While there are not currently any warnings that this suppresses (that
622        // we're aware of), it's good future-proofing hygiene.
623        #[automatically_derived]
624        impl #impl_generics ::zerocopy::util::macro_util::core_reexport::cmp::Eq for #type_ident #ty_generics
625        where
626            Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
627            #where_predicates
628        {
629        }
630    })
631}
632
633/// A struct is `TryFromBytes` if:
634/// - all fields are `TryFromBytes`
635fn derive_try_from_bytes_struct(
636    ast: &DeriveInput,
637    strct: &DataStruct,
638    top_level: Trait,
639) -> Result<TokenStream, Error> {
640    let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
641        let fields = strct.fields();
642        let field_names = fields.iter().map(|(_vis, name, _ty)| name);
643        let field_tys = fields.iter().map(|(_vis, _name, ty)| ty);
644        quote!(
645            // SAFETY: We use `is_bit_valid` to validate that each field is
646            // bit-valid, and only return `true` if all of them are. The bit
647            // validity of a struct is just the composition of the bit
648            // validities of its fields, so this is a sound implementation of
649            // `is_bit_valid`.
650            fn is_bit_valid<___ZerocopyAliasing>(
651                mut candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
652            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
653            where
654                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
655                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
656            {
657                true #(&& {
658                    // SAFETY:
659                    // - `project` is a field projection, and so it addresses a
660                    //   subset of the bytes addressed by `slf`
661                    // - ..., and so it preserves provenance
662                    // - ..., and `*slf` is a struct, so `UnsafeCell`s exist at
663                    //   the same byte ranges in the returned pointer's referent
664                    //   as they do in `*slf`
665                    let field_candidate = unsafe {
666                        let project = |slf: *mut Self|
667                            ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
668
669                        candidate.reborrow().project(project)
670                    };
671
672                    <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
673                })*
674            }
675        )
676    });
677    Ok(impl_block(
678        ast,
679        strct,
680        Trait::TryFromBytes,
681        FieldBounds::ALL_SELF,
682        SelfBounds::None,
683        None,
684        Some(extras),
685        None,
686    ))
687}
688
689/// A union is `TryFromBytes` if:
690/// - all of its fields are `TryFromBytes` and `Immutable`
691fn derive_try_from_bytes_union(
692    ast: &DeriveInput,
693    unn: &DataUnion,
694    top_level: Trait,
695) -> TokenStream {
696    // TODO(#5): Remove the `Immutable` bound.
697    let field_type_trait_bounds =
698        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
699    let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
700        let fields = unn.fields();
701        let field_names = fields.iter().map(|(_vis, name, _ty)| name);
702        let field_tys = fields.iter().map(|(_vis, _name, ty)| ty);
703        quote!(
704            // SAFETY: We use `is_bit_valid` to validate that any field is
705            // bit-valid; we only return `true` if at least one of them is. The
706            // bit validity of a union is not yet well defined in Rust, but it
707            // is guaranteed to be no more strict than this definition. See #696
708            // for a more in-depth discussion.
709            fn is_bit_valid<___ZerocopyAliasing>(
710                mut candidate: ::zerocopy::Maybe<'_, Self, ___ZerocopyAliasing>
711            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
712            where
713                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
714                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
715            {
716                false #(|| {
717                    // SAFETY:
718                    // - `project` is a field projection, and so it addresses a
719                    //   subset of the bytes addressed by `slf`
720                    // - ..., and so it preserves provenance
721                    // - Since `Self: Immutable` is enforced by
722                    //   `self_type_trait_bounds`, neither `*slf` nor the
723                    //   returned pointer's referent contain any `UnsafeCell`s
724                    let field_candidate = unsafe {
725                        let project = |slf: *mut Self|
726                            ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
727
728                        candidate.reborrow().project(project)
729                    };
730
731                    <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
732                })*
733            }
734        )
735    });
736    impl_block(
737        ast,
738        unn,
739        Trait::TryFromBytes,
740        field_type_trait_bounds,
741        SelfBounds::None,
742        None,
743        Some(extras),
744        None,
745    )
746}
747
748fn derive_try_from_bytes_enum(
749    ast: &DeriveInput,
750    enm: &DataEnum,
751    top_level: Trait,
752) -> Result<TokenStream, Error> {
753    let repr = EnumRepr::from_attrs(&ast.attrs)?;
754
755    // If an enum has no fields, it has a well-defined integer representation,
756    // and every possible bit pattern corresponds to a valid discriminant tag,
757    // then it *could* be `FromBytes` (even if the user hasn't derived
758    // `FromBytes`). This holds if, for `repr(uN)` or `repr(iN)`, there are 2^N
759    // variants.
760    let could_be_from_bytes = enum_size_from_repr(&repr)
761        .map(|size| enm.fields().is_empty() && enm.variants.len() == 1usize << size)
762        .unwrap_or(false);
763
764    let trivial_is_bit_valid = try_gen_trivial_is_bit_valid(ast, top_level);
765    let extra = match (trivial_is_bit_valid, could_be_from_bytes) {
766        (Some(is_bit_valid), _) => is_bit_valid,
767        // SAFETY: It would be sound for the enum to implement `FomBytes`, as
768        // required by `gen_trivial_is_bit_valid_unchecked`.
769        (None, true) => unsafe { gen_trivial_is_bit_valid_unchecked() },
770        (None, false) => r#enum::derive_is_bit_valid(&ast.ident, &repr, &ast.generics, enm)?,
771    };
772
773    Ok(impl_block(
774        ast,
775        enm,
776        Trait::TryFromBytes,
777        FieldBounds::ALL_SELF,
778        SelfBounds::None,
779        None,
780        Some(extra),
781        None,
782    ))
783}
784
785/// Attempts to generate a `TryFromBytes::is_bit_valid` instance that
786/// unconditionally returns true.
787///
788/// This should be used where possible. Using this impl is faster to codegen,
789/// faster to compile, and is friendlier on the optimizer.
790fn try_gen_trivial_is_bit_valid(
791    ast: &DeriveInput,
792    top_level: Trait,
793) -> Option<proc_macro2::TokenStream> {
794    // If the top-level trait is `FromBytes` and `Self` has no type parameters,
795    // then the `FromBytes` derive will fail compilation if `Self` is not
796    // actually soundly `FromBytes`, and so we can rely on that for our
797    // `is_bit_valid` impl. It's plausible that we could make changes - or Rust
798    // could make changes (such as the "trivial bounds" language feature) - that
799    // make this no longer true. To hedge against these, we include an explicit
800    // `Self: FromBytes` check in the generated `is_bit_valid`, which is
801    // bulletproof.
802    if top_level == Trait::FromBytes && ast.generics.params.is_empty() {
803        Some(quote!(
804            // SAFETY: See inline.
805            fn is_bit_valid<___ZerocopyAliasing>(
806                _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
807            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
808            where
809                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
810                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
811            {
812                if false {
813                    fn assert_is_from_bytes<T>()
814                    where
815                        T: ::zerocopy::FromBytes,
816                        T: ?::zerocopy::util::macro_util::core_reexport::marker::Sized,
817                    {
818                    }
819
820                    assert_is_from_bytes::<Self>();
821                }
822
823                // SAFETY: The preceding code only compiles if `Self:
824                // FromBytes`. Thus, this code only compiles if all initialized
825                // byte sequences represent valid instances of `Self`.
826                true
827            }
828        ))
829    } else {
830        None
831    }
832}
833
834/// Generates a `TryFromBytes::is_bit_valid` instance that unconditionally
835/// returns true.
836///
837/// This should be used where possible, (although `try_gen_trivial_is_bit_valid`
838/// should be preferred over this for safety reasons). Using this impl is faster
839/// to codegen, faster to compile, and is friendlier on the optimizer.
840///
841/// # Safety
842///
843/// The caller must ensure that all initialized bit patterns are valid for
844/// `Self`.
845unsafe fn gen_trivial_is_bit_valid_unchecked() -> proc_macro2::TokenStream {
846    quote!(
847        // SAFETY: The caller of `gen_trivial_is_bit_valid_unchecked` has
848        // promised that all initialized bit patterns are valid for `Self`.
849        fn is_bit_valid<___ZerocopyAliasing>(
850            _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
851        ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
852        where
853            ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
854                + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
855        {
856            true
857        }
858    )
859}
860
861/// A struct is `FromZeros` if:
862/// - all fields are `FromZeros`
863fn derive_from_zeros_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
864    impl_block(
865        ast,
866        strct,
867        Trait::FromZeros,
868        FieldBounds::ALL_SELF,
869        SelfBounds::None,
870        None,
871        None,
872        None,
873    )
874}
875
876/// Returns `Ok(index)` if variant `index` of the enum has a discriminant of
877/// zero. If `Err(bool)` is returned, the boolean is true if the enum has
878/// unknown discriminants (e.g. discriminants set to const expressions which we
879/// can't evaluate in a proc macro). If the enum has unknown discriminants, then
880/// it might have a zero variant that we just can't detect.
881fn find_zero_variant(enm: &DataEnum) -> Result<usize, bool> {
882    // Discriminants can be anywhere in the range [i128::MIN, u128::MAX] because
883    // the discriminant type may be signed or unsigned. Since we only care about
884    // tracking the discriminant when it's less than or equal to zero, we can
885    // avoid u128 -> i128 conversions and bounds checking by making the "next
886    // discriminant" value implicitly negative.
887    // Technically 64 bits is enough, but 128 is better for future compatibility
888    // with https://github.com/rust-lang/rust/issues/56071
889    let mut next_negative_discriminant = Some(0);
890
891    // Sometimes we encounter explicit discriminants that we can't know the
892    // value of (e.g. a constant expression that requires evaluation). These
893    // could evaluate to zero or a negative number, but we can't assume that
894    // they do (no false positives allowed!). So we treat them like strictly-
895    // positive values that can't result in any zero variants, and track whether
896    // we've encountered any unknown discriminants.
897    let mut has_unknown_discriminants = false;
898
899    for (i, v) in enm.variants.iter().enumerate() {
900        match v.discriminant.as_ref() {
901            // Implicit discriminant
902            None => {
903                match next_negative_discriminant.as_mut() {
904                    Some(0) => return Ok(i),
905                    // n is nonzero so subtraction is always safe
906                    Some(n) => *n -= 1,
907                    None => (),
908                }
909            }
910            // Explicit positive discriminant
911            Some((_, Expr::Lit(ExprLit { lit: Lit::Int(int), .. }))) => {
912                match int.base10_parse::<u128>().ok() {
913                    Some(0) => return Ok(i),
914                    Some(_) => next_negative_discriminant = None,
915                    None => {
916                        // Numbers should never fail to parse, but just in case:
917                        has_unknown_discriminants = true;
918                        next_negative_discriminant = None;
919                    }
920                }
921            }
922            // Explicit negative discriminant
923            Some((_, Expr::Unary(ExprUnary { op: UnOp::Neg(_), expr, .. }))) => match &**expr {
924                Expr::Lit(ExprLit { lit: Lit::Int(int), .. }) => {
925                    match int.base10_parse::<u128>().ok() {
926                        Some(0) => return Ok(i),
927                        // x is nonzero so subtraction is always safe
928                        Some(x) => next_negative_discriminant = Some(x - 1),
929                        None => {
930                            // Numbers should never fail to parse, but just in
931                            // case:
932                            has_unknown_discriminants = true;
933                            next_negative_discriminant = None;
934                        }
935                    }
936                }
937                // Unknown negative discriminant (e.g. const repr)
938                _ => {
939                    has_unknown_discriminants = true;
940                    next_negative_discriminant = None;
941                }
942            },
943            // Unknown discriminant (e.g. const expr)
944            _ => {
945                has_unknown_discriminants = true;
946                next_negative_discriminant = None;
947            }
948        }
949    }
950
951    Err(has_unknown_discriminants)
952}
953
954/// An enum is `FromZeros` if:
955/// - one of the variants has a discriminant of `0`
956/// - that variant's fields are all `FromZeros`
957fn derive_from_zeros_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
958    let repr = EnumRepr::from_attrs(&ast.attrs)?;
959
960    // We don't actually care what the repr is; we just care that it's one of
961    // the allowed ones.
962    match repr {
963         Repr::Compound(
964            Spanned { t: CompoundRepr::C | CompoundRepr::Primitive(_), span: _ },
965            _,
966        ) => {}
967        Repr::Transparent(_)
968        | Repr::Compound(Spanned { t: CompoundRepr::Rust, span: _ }, _) => return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout")),
969    }
970
971    let zero_variant = match find_zero_variant(enm) {
972        Ok(index) => enm.variants.iter().nth(index).unwrap(),
973        // Has unknown variants
974        Err(true) => {
975            return Err(Error::new_spanned(
976                ast,
977                "FromZeros only supported on enums with a variant that has a discriminant of `0`\n\
978                help: This enum has discriminants which are not literal integers. One of those may \
979                define or imply which variant has a discriminant of zero. Use a literal integer to \
980                define or imply the variant with a discriminant of zero.",
981            ));
982        }
983        // Does not have unknown variants
984        Err(false) => {
985            return Err(Error::new_spanned(
986                ast,
987                "FromZeros only supported on enums with a variant that has a discriminant of `0`",
988            ));
989        }
990    };
991
992    let explicit_bounds = zero_variant
993        .fields
994        .iter()
995        .map(|field| {
996            let ty = &field.ty;
997            parse_quote! { #ty: ::zerocopy::FromZeros }
998        })
999        .collect::<Vec<WherePredicate>>();
1000
1001    Ok(impl_block(
1002        ast,
1003        enm,
1004        Trait::FromZeros,
1005        FieldBounds::Explicit(explicit_bounds),
1006        SelfBounds::None,
1007        None,
1008        None,
1009        None,
1010    ))
1011}
1012
1013/// Unions are `FromZeros` if
1014/// - all fields are `FromZeros` and `Immutable`
1015fn derive_from_zeros_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
1016    // TODO(#5): Remove the `Immutable` bound. It's only necessary for
1017    // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
1018    let field_type_trait_bounds =
1019        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
1020    impl_block(
1021        ast,
1022        unn,
1023        Trait::FromZeros,
1024        field_type_trait_bounds,
1025        SelfBounds::None,
1026        None,
1027        None,
1028        None,
1029    )
1030}
1031
1032/// A struct is `FromBytes` if:
1033/// - all fields are `FromBytes`
1034fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
1035    impl_block(
1036        ast,
1037        strct,
1038        Trait::FromBytes,
1039        FieldBounds::ALL_SELF,
1040        SelfBounds::None,
1041        None,
1042        None,
1043        None,
1044    )
1045}
1046
1047/// An enum is `FromBytes` if:
1048/// - Every possible bit pattern must be valid, which means that every bit
1049///   pattern must correspond to a different enum variant. Thus, for an enum
1050///   whose layout takes up N bytes, there must be 2^N variants.
1051/// - Since we must know N, only representations which guarantee the layout's
1052///   size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
1053///   implementation-defined size). `usize` and `isize` technically guarantee the
1054///   layout's size, but would require us to know how large those are on the
1055///   target platform. This isn't terribly difficult - we could emit a const
1056///   expression that could call `core::mem::size_of` in order to determine the
1057///   size and check against the number of enum variants, but a) this would be
1058///   platform-specific and, b) even on Rust's smallest bit width platform (32),
1059///   this would require ~4 billion enum variants, which obviously isn't a thing.
1060/// - All fields of all variants are `FromBytes`.
1061fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1062    let repr = EnumRepr::from_attrs(&ast.attrs)?;
1063
1064    let variants_required = 1usize << enum_size_from_repr(&repr)?;
1065    if enm.variants.len() != variants_required {
1066        return Err(Error::new_spanned(
1067            ast,
1068            format!(
1069                "FromBytes only supported on {} enum with {} variants",
1070                repr.repr_type_name(),
1071                variants_required
1072            ),
1073        ));
1074    }
1075
1076    Ok(impl_block(
1077        ast,
1078        enm,
1079        Trait::FromBytes,
1080        FieldBounds::ALL_SELF,
1081        SelfBounds::None,
1082        None,
1083        None,
1084        None,
1085    ))
1086}
1087
1088// Returns `None` if the enum's size is not guaranteed by the repr.
1089fn enum_size_from_repr(repr: &EnumRepr) -> Result<usize, Error> {
1090    use {CompoundRepr::*, PrimitiveRepr::*, Repr::*};
1091    match repr {
1092        Transparent(span)
1093        | Compound(
1094            Spanned { t: C | Rust | Primitive(U32 | I32 | U64 | I64 | Usize | Isize), span },
1095            _,
1096        ) => Err(Error::new(*span, "`FromBytes` only supported on enums with `#[repr(...)]` attributes `u8`, `i8`, `u16`, or `i16`")),
1097        Compound(Spanned { t: Primitive(U8 | I8), span: _ }, _align) => Ok(8),
1098        Compound(Spanned { t: Primitive(U16 | I16), span: _ }, _align) => Ok(16),
1099    }
1100}
1101
1102/// Unions are `FromBytes` if
1103/// - all fields are `FromBytes` and `Immutable`
1104fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
1105    // TODO(#5): Remove the `Immutable` bound. It's only necessary for
1106    // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
1107    let field_type_trait_bounds =
1108        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
1109    impl_block(
1110        ast,
1111        unn,
1112        Trait::FromBytes,
1113        field_type_trait_bounds,
1114        SelfBounds::None,
1115        None,
1116        None,
1117        None,
1118    )
1119}
1120
1121fn derive_into_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
1122    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1123
1124    let is_transparent = repr.is_transparent();
1125    let is_c = repr.is_c();
1126    let is_packed_1 = repr.is_packed_1();
1127    let num_fields = strct.fields().len();
1128
1129    let (padding_check, require_unaligned_fields) = if is_transparent || is_packed_1 {
1130        // No padding check needed.
1131        // - repr(transparent): The layout and ABI of the whole struct is the
1132        //   same as its only non-ZST field (meaning there's no padding outside
1133        //   of that field) and we require that field to be `IntoBytes` (meaning
1134        //   there's no padding in that field).
1135        // - repr(packed): Any inter-field padding bytes are removed, meaning
1136        //   that any padding bytes would need to come from the fields, all of
1137        //   which we require to be `IntoBytes` (meaning they don't have any
1138        //   padding). Note that this holds regardless of other `repr`
1139        //   attributes, including `repr(Rust)`. [1]
1140        //
1141        // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-alignment-modifiers:
1142        //
1143        //   An important consequence of these rules is that a type with
1144        //   `#[repr(packed(1))]`` (or `#[repr(packed)]``) will have no
1145        //   inter-field padding.
1146        (None, false)
1147    } else if is_c && !repr.is_align_gt_1() && num_fields <= 1 {
1148        // No padding check needed. A repr(C) struct with zero or one field has
1149        // no padding unless #[repr(align)] explicitly adds padding, which we
1150        // check for in this branch's condition.
1151        (None, false)
1152    } else if ast.generics.params.is_empty() {
1153        // Since there are no generics, we can emit a padding check. All reprs
1154        // guarantee that fields won't overlap [1], so the padding check is
1155        // sound. This is more permissive than the next case, which requires
1156        // that all field types implement `Unaligned`.
1157        //
1158        // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-rust-representation:
1159        //
1160        //   The only data layout guarantees made by [`repr(Rust)`] are those
1161        //   required for soundness. They are:
1162        //   ...
1163        //   2. The fields do not overlap.
1164        //   ...
1165        (Some(PaddingCheck::Struct), false)
1166    } else if is_c && !repr.is_align_gt_1() {
1167        // We can't use a padding check since there are generic type arguments.
1168        // Instead, we require all field types to implement `Unaligned`. This
1169        // ensures that the `repr(C)` layout algorithm will not insert any
1170        // padding unless #[repr(align)] explicitly adds padding, which we check
1171        // for in this branch's condition.
1172        //
1173        // TODO(#10): Support type parameters for non-transparent, non-packed
1174        // structs without requiring `Unaligned`.
1175        (None, true)
1176    } else {
1177        return Err(Error::new(Span::call_site(), "must have a non-align #[repr(...)] attribute in order to guarantee this type's memory layout"));
1178    };
1179
1180    let field_bounds = if require_unaligned_fields {
1181        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Unaligned)])
1182    } else {
1183        FieldBounds::ALL_SELF
1184    };
1185
1186    Ok(impl_block(
1187        ast,
1188        strct,
1189        Trait::IntoBytes,
1190        field_bounds,
1191        SelfBounds::None,
1192        padding_check,
1193        None,
1194        None,
1195    ))
1196}
1197
1198/// If the type is an enum:
1199/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
1200///   `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
1201/// - It must have no padding bytes.
1202/// - Its fields must be `IntoBytes`.
1203fn derive_into_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1204    let repr = EnumRepr::from_attrs(&ast.attrs)?;
1205    if !repr.is_c() && !repr.is_primitive() {
1206        return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout"));
1207    }
1208
1209    let tag_type_definition = r#enum::generate_tag_enum(&repr, enm);
1210    Ok(impl_block(
1211        ast,
1212        enm,
1213        Trait::IntoBytes,
1214        FieldBounds::ALL_SELF,
1215        SelfBounds::None,
1216        Some(PaddingCheck::Enum { tag_type_definition }),
1217        None,
1218        None,
1219    ))
1220}
1221
1222/// A union is `IntoBytes` if:
1223/// - all fields are `IntoBytes`
1224/// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
1225/// - no padding (size of union equals size of each field type)
1226fn derive_into_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
1227    // See #1792 for more context.
1228    //
1229    // By checking for `zerocopy_derive_union_into_bytes` both here and in the
1230    // generated code, we ensure that `--cfg zerocopy_derive_union_into_bytes`
1231    // need only be passed *either* when compiling this crate *or* when
1232    // compiling the user's crate. The former is preferable, but in some
1233    // situations (such as when cross-compiling using `cargo build --target`),
1234    // it doesn't get propagated to this crate's build by default.
1235    let cfg_compile_error = if cfg!(zerocopy_derive_union_into_bytes) {
1236        quote!()
1237    } else {
1238        quote!(
1239            const _: () = {
1240                #[cfg(not(zerocopy_derive_union_into_bytes))]
1241                ::zerocopy::util::macro_util::core_reexport::compile_error!(
1242                    "requires --cfg zerocopy_derive_union_into_bytes;
1243please let us know you use this feature: https://github.com/google/zerocopy/discussions/1802"
1244                );
1245            };
1246        )
1247    };
1248
1249    // TODO(#10): Support type parameters.
1250    if !ast.generics.params.is_empty() {
1251        return Err(Error::new(Span::call_site(), "unsupported on types with type parameters"));
1252    }
1253
1254    // Because we don't support generics, we don't need to worry about
1255    // special-casing different reprs. So long as there is *some* repr which
1256    // guarantees the layout, our `PaddingCheck::Union` guarantees that there is
1257    // no padding.
1258    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1259    if !repr.is_c() && !repr.is_transparent() && !repr.is_packed_1() {
1260        return Err(Error::new(
1261            Span::call_site(),
1262            "must be #[repr(C)], #[repr(packed)], or #[repr(transparent)]",
1263        ));
1264    }
1265
1266    let impl_block = impl_block(
1267        ast,
1268        unn,
1269        Trait::IntoBytes,
1270        FieldBounds::ALL_SELF,
1271        SelfBounds::None,
1272        Some(PaddingCheck::Union),
1273        None,
1274        None,
1275    );
1276    Ok(quote!(#cfg_compile_error #impl_block))
1277}
1278
1279/// A struct is `Unaligned` if:
1280/// - `repr(align)` is no more than 1 and either
1281///   - `repr(C)` or `repr(transparent)` and
1282///     - all fields `Unaligned`
1283///   - `repr(packed)`
1284fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
1285    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1286    repr.unaligned_validate_no_align_gt_1()?;
1287
1288    let field_bounds = if repr.is_packed_1() {
1289        FieldBounds::None
1290    } else if repr.is_c() || repr.is_transparent() {
1291        FieldBounds::ALL_SELF
1292    } else {
1293        return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
1294    };
1295
1296    Ok(impl_block(ast, strct, Trait::Unaligned, field_bounds, SelfBounds::None, None, None, None))
1297}
1298
1299/// An enum is `Unaligned` if:
1300/// - No `repr(align(N > 1))`
1301/// - `repr(u8)` or `repr(i8)`
1302fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1303    let repr = EnumRepr::from_attrs(&ast.attrs)?;
1304    repr.unaligned_validate_no_align_gt_1()?;
1305
1306    if !repr.is_u8() && !repr.is_i8() {
1307        return Err(Error::new(Span::call_site(), "must have #[repr(u8)] or #[repr(i8)] attribute in order to guarantee this type's alignment"));
1308    }
1309
1310    Ok(impl_block(
1311        ast,
1312        enm,
1313        Trait::Unaligned,
1314        FieldBounds::ALL_SELF,
1315        SelfBounds::None,
1316        None,
1317        None,
1318        None,
1319    ))
1320}
1321
1322/// Like structs, a union is `Unaligned` if:
1323/// - `repr(align)` is no more than 1 and either
1324///   - `repr(C)` or `repr(transparent)` and
1325///     - all fields `Unaligned`
1326///   - `repr(packed)`
1327fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
1328    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1329    repr.unaligned_validate_no_align_gt_1()?;
1330
1331    let field_type_trait_bounds = if repr.is_packed_1() {
1332        FieldBounds::None
1333    } else if repr.is_c() || repr.is_transparent() {
1334        FieldBounds::ALL_SELF
1335    } else {
1336        return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
1337    };
1338
1339    Ok(impl_block(
1340        ast,
1341        unn,
1342        Trait::Unaligned,
1343        field_type_trait_bounds,
1344        SelfBounds::None,
1345        None,
1346        None,
1347        None,
1348    ))
1349}
1350
1351/// This enum describes what kind of padding check needs to be generated for the
1352/// associated impl.
1353enum PaddingCheck {
1354    /// Check that the sum of the fields' sizes exactly equals the struct's
1355    /// size.
1356    Struct,
1357    /// Check that the size of each field exactly equals the union's size.
1358    Union,
1359    /// Check that every variant of the enum contains no padding.
1360    ///
1361    /// Because doing so requires a tag enum, this padding check requires an
1362    /// additional `TokenStream` which defines the tag enum as `___ZerocopyTag`.
1363    Enum { tag_type_definition: TokenStream },
1364}
1365
1366impl PaddingCheck {
1367    /// Returns the ident of the macro to call in order to validate that a type
1368    /// passes the padding check encoded by `PaddingCheck`.
1369    fn validator_macro_ident(&self) -> Ident {
1370        let s = match self {
1371            PaddingCheck::Struct => "struct_has_padding",
1372            PaddingCheck::Union => "union_has_padding",
1373            PaddingCheck::Enum { .. } => "enum_has_padding",
1374        };
1375
1376        Ident::new(s, Span::call_site())
1377    }
1378
1379    /// Sometimes performing the padding check requires some additional
1380    /// "context" code. For enums, this is the definition of the tag enum.
1381    fn validator_macro_context(&self) -> Option<&TokenStream> {
1382        match self {
1383            PaddingCheck::Struct | PaddingCheck::Union => None,
1384            PaddingCheck::Enum { tag_type_definition } => Some(tag_type_definition),
1385        }
1386    }
1387}
1388
1389#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1390enum Trait {
1391    KnownLayout,
1392    Immutable,
1393    TryFromBytes,
1394    FromZeros,
1395    FromBytes,
1396    IntoBytes,
1397    Unaligned,
1398    Sized,
1399    ByteHash,
1400    ByteEq,
1401}
1402
1403impl ToTokens for Trait {
1404    fn to_tokens(&self, tokens: &mut TokenStream) {
1405        // According to [1], the format of the derived `Debug`` output is not
1406        // stable and therefore not guaranteed to represent the variant names.
1407        // Indeed with the (unstable) `fmt-debug` compiler flag [2], it can
1408        // return only a minimalized output or empty string. To make sure this
1409        // code will work in the future and independet of the compiler flag, we
1410        // translate the variants to their names manually here.
1411        //
1412        // [1] https://doc.rust-lang.org/1.81.0/std/fmt/trait.Debug.html#stability
1413        // [2] https://doc.rust-lang.org/beta/unstable-book/compiler-flags/fmt-debug.html
1414        let s = match self {
1415            Trait::KnownLayout => "KnownLayout",
1416            Trait::Immutable => "Immutable",
1417            Trait::TryFromBytes => "TryFromBytes",
1418            Trait::FromZeros => "FromZeros",
1419            Trait::FromBytes => "FromBytes",
1420            Trait::IntoBytes => "IntoBytes",
1421            Trait::Unaligned => "Unaligned",
1422            Trait::Sized => "Sized",
1423            Trait::ByteHash => "ByteHash",
1424            Trait::ByteEq => "ByteEq",
1425        };
1426        let ident = Ident::new(s, Span::call_site());
1427        tokens.extend(core::iter::once(TokenTree::Ident(ident)));
1428    }
1429}
1430
1431impl Trait {
1432    fn crate_path(&self) -> Path {
1433        match self {
1434            Self::Sized => parse_quote!(::zerocopy::util::macro_util::core_reexport::marker::#self),
1435            _ => parse_quote!(::zerocopy::#self),
1436        }
1437    }
1438}
1439
1440#[derive(Debug, Eq, PartialEq)]
1441enum TraitBound {
1442    Slf,
1443    Other(Trait),
1444}
1445
1446enum FieldBounds<'a> {
1447    None,
1448    All(&'a [TraitBound]),
1449    Trailing(&'a [TraitBound]),
1450    Explicit(Vec<WherePredicate>),
1451}
1452
1453impl<'a> FieldBounds<'a> {
1454    const ALL_SELF: FieldBounds<'a> = FieldBounds::All(&[TraitBound::Slf]);
1455    const TRAILING_SELF: FieldBounds<'a> = FieldBounds::Trailing(&[TraitBound::Slf]);
1456}
1457
1458#[derive(Debug, Eq, PartialEq)]
1459enum SelfBounds<'a> {
1460    None,
1461    All(&'a [Trait]),
1462}
1463
1464// TODO(https://github.com/rust-lang/rust-clippy/issues/12908): This is a false positive.
1465// Explicit lifetimes are actually necessary here.
1466#[allow(clippy::needless_lifetimes)]
1467impl<'a> SelfBounds<'a> {
1468    const SIZED: Self = Self::All(&[Trait::Sized]);
1469}
1470
1471/// Normalizes a slice of bounds by replacing [`TraitBound::Slf`] with `slf`.
1472fn normalize_bounds(slf: Trait, bounds: &[TraitBound]) -> impl '_ + Iterator<Item = Trait> {
1473    bounds.iter().map(move |bound| match bound {
1474        TraitBound::Slf => slf,
1475        TraitBound::Other(trt) => *trt,
1476    })
1477}
1478
1479#[allow(clippy::too_many_arguments)]
1480fn impl_block<D: DataExt>(
1481    input: &DeriveInput,
1482    data: &D,
1483    trt: Trait,
1484    field_type_trait_bounds: FieldBounds,
1485    self_type_trait_bounds: SelfBounds,
1486    padding_check: Option<PaddingCheck>,
1487    inner_extras: Option<TokenStream>,
1488    outer_extras: Option<TokenStream>,
1489) -> TokenStream {
1490    // In this documentation, we will refer to this hypothetical struct:
1491    //
1492    //   #[derive(FromBytes)]
1493    //   struct Foo<T, I: Iterator>
1494    //   where
1495    //       T: Copy,
1496    //       I: Clone,
1497    //       I::Item: Clone,
1498    //   {
1499    //       a: u8,
1500    //       b: T,
1501    //       c: I::Item,
1502    //   }
1503    //
1504    // We extract the field types, which in this case are `u8`, `T`, and
1505    // `I::Item`. We re-use the existing parameters and where clauses. If
1506    // `require_trait_bound == true` (as it is for `FromBytes), we add where
1507    // bounds for each field's type:
1508    //
1509    //   impl<T, I: Iterator> FromBytes for Foo<T, I>
1510    //   where
1511    //       T: Copy,
1512    //       I: Clone,
1513    //       I::Item: Clone,
1514    //       T: FromBytes,
1515    //       I::Item: FromBytes,
1516    //   {
1517    //   }
1518    //
1519    // NOTE: It is standard practice to only emit bounds for the type parameters
1520    // themselves, not for field types based on those parameters (e.g., `T` vs
1521    // `T::Foo`). For a discussion of why this is standard practice, see
1522    // https://github.com/rust-lang/rust/issues/26925.
1523    //
1524    // The reason we diverge from this standard is that doing it that way for us
1525    // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
1526    // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
1527    // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
1528    //
1529    // While there's no getting around this requirement for us, it does have the
1530    // pretty serious downside that, when lifetimes are involved, the trait
1531    // solver ties itself in knots:
1532    //
1533    //     #[derive(Unaligned)]
1534    //     #[repr(C)]
1535    //     struct Dup<'a, 'b> {
1536    //         a: PhantomData<&'a u8>,
1537    //         b: PhantomData<&'b u8>,
1538    //     }
1539    //
1540    //     error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
1541    //      --> src/main.rs:6:10
1542    //       |
1543    //     6 | #[derive(Unaligned)]
1544    //       |          ^^^^^^^^^
1545    //       |
1546    //       = note: required by `zerocopy::Unaligned`
1547
1548    let type_ident = &input.ident;
1549    let trait_path = trt.crate_path();
1550    let fields = data.fields();
1551    let variants = data.variants();
1552    let tag = data.tag();
1553
1554    fn bound_tt(ty: &Type, traits: impl Iterator<Item = Trait>) -> WherePredicate {
1555        let traits = traits.map(|t| t.crate_path());
1556        parse_quote!(#ty: #(#traits)+*)
1557    }
1558    let field_type_bounds: Vec<_> = match (field_type_trait_bounds, &fields[..]) {
1559        (FieldBounds::All(traits), _) => fields
1560            .iter()
1561            .map(|(_vis, _name, ty)| bound_tt(ty, normalize_bounds(trt, traits)))
1562            .collect(),
1563        (FieldBounds::None, _) | (FieldBounds::Trailing(..), []) => vec![],
1564        (FieldBounds::Trailing(traits), [.., last]) => {
1565            vec![bound_tt(last.2, normalize_bounds(trt, traits))]
1566        }
1567        (FieldBounds::Explicit(bounds), _) => bounds,
1568    };
1569
1570    // Don't bother emitting a padding check if there are no fields.
1571    #[allow(unstable_name_collisions)] // See `BoolExt` below
1572    // Work around https://github.com/rust-lang/rust-clippy/issues/12280
1573    #[allow(clippy::incompatible_msrv)]
1574    let padding_check_bound =
1575        padding_check.and_then(|check| (!fields.is_empty()).then_some(check)).map(|check| {
1576            let variant_types = variants.iter().map(|var| {
1577                let types = var.iter().map(|(_vis, _name, ty)| ty);
1578                quote!([#(#types),*])
1579            });
1580            let validator_context = check.validator_macro_context();
1581            let validator_macro = check.validator_macro_ident();
1582            let t = tag.iter();
1583            parse_quote! {
1584                (): ::zerocopy::util::macro_util::PaddingFree<
1585                    Self,
1586                    {
1587                        #validator_context
1588                        ::zerocopy::#validator_macro!(Self, #(#t,)* #(#variant_types),*)
1589                    }
1590                >
1591            }
1592        });
1593
1594    let self_bounds: Option<WherePredicate> = match self_type_trait_bounds {
1595        SelfBounds::None => None,
1596        SelfBounds::All(traits) => Some(bound_tt(&parse_quote!(Self), traits.iter().copied())),
1597    };
1598
1599    let bounds = input
1600        .generics
1601        .where_clause
1602        .as_ref()
1603        .map(|where_clause| where_clause.predicates.iter())
1604        .into_iter()
1605        .flatten()
1606        .chain(field_type_bounds.iter())
1607        .chain(padding_check_bound.iter())
1608        .chain(self_bounds.iter());
1609
1610    // The parameters with trait bounds, but without type defaults.
1611    let params = input.generics.params.clone().into_iter().map(|mut param| {
1612        match &mut param {
1613            GenericParam::Type(ty) => ty.default = None,
1614            GenericParam::Const(cnst) => cnst.default = None,
1615            GenericParam::Lifetime(_) => {}
1616        }
1617        quote!(#param)
1618    });
1619
1620    // The identifiers of the parameters without trait bounds or type defaults.
1621    let param_idents = input.generics.params.iter().map(|param| match param {
1622        GenericParam::Type(ty) => {
1623            let ident = &ty.ident;
1624            quote!(#ident)
1625        }
1626        GenericParam::Lifetime(l) => {
1627            let ident = &l.lifetime;
1628            quote!(#ident)
1629        }
1630        GenericParam::Const(cnst) => {
1631            let ident = &cnst.ident;
1632            quote!({#ident})
1633        }
1634    });
1635
1636    let impl_tokens = quote! {
1637        // TODO(#553): Add a test that generates a warning when
1638        // `#[allow(deprecated)]` isn't present.
1639        #[allow(deprecated)]
1640        // While there are not currently any warnings that this suppresses (that
1641        // we're aware of), it's good future-proofing hygiene.
1642        #[automatically_derived]
1643        unsafe impl < #(#params),* > #trait_path for #type_ident < #(#param_idents),* >
1644        where
1645            #(#bounds,)*
1646        {
1647            fn only_derive_is_allowed_to_implement_this_trait() {}
1648
1649            #inner_extras
1650        }
1651    };
1652
1653    if let Some(outer_extras) = outer_extras {
1654        // So that any items defined in `#outer_extras` don't conflict with
1655        // existing names defined in this scope.
1656        quote! {
1657            const _: () = {
1658                #impl_tokens
1659
1660                #outer_extras
1661            };
1662        }
1663    } else {
1664        impl_tokens
1665    }
1666}
1667
1668// A polyfill for `Option::then_some`, which was added after our MSRV.
1669//
1670// The `#[allow(unused)]` is necessary because, on sufficiently recent toolchain
1671// versions, `b.then_some(...)` resolves to the inherent method rather than to
1672// this trait, and so this trait is considered unused.
1673//
1674// TODO(#67): Remove this once our MSRV is >= 1.62.
1675#[allow(unused)]
1676trait BoolExt {
1677    fn then_some<T>(self, t: T) -> Option<T>;
1678}
1679
1680impl BoolExt for bool {
1681    fn then_some<T>(self, t: T) -> Option<T> {
1682        if self {
1683            Some(t)
1684        } else {
1685            None
1686        }
1687    }
1688}