1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// We want these functions to be called `fft`
#![allow(clippy::module_name_repetitions)]
use crate::FieldElement;
use std::prelude::v1::*;

// TODO: Create a dedicated type for permuted vectors

/// Permute index for an FFT of `size`
///
/// The permutation is it's own inverse. The permutation is currently
/// a 'bit-reversal' one, where each index has its binary representation
/// reversed.
pub fn permute_index(size: usize, index: usize) -> usize {
    const USIZE_BITS: usize = 0_usize.count_zeros() as usize;
    debug_assert!(index < size);
    if size == 1 {
        0
    } else {
        debug_assert!(size.is_power_of_two());
        let bits = size.trailing_zeros() as usize;
        index.reverse_bits() >> (USIZE_BITS - bits)
    }
}

/// Permute an array of FFT results.
// TODO expose public ifft function which accepts bit-reversed input instead.
pub fn permute<T>(v: &mut [T]) {
    let n = v.len();
    for i in 0..n {
        let j = permute_index(n, i);
        if j > i {
            v.swap(i, j);
        }
    }
}

/// Out-of-place FFT with non-permuted result.
pub fn fft(a: &[FieldElement]) -> Vec<FieldElement> {
    let mut result = a.to_owned();
    fft_permuted(&mut result);
    permute(&mut result);
    result
}

/// Out-of-place inverse FFT with non-permuted result.
pub fn ifft(a: &[FieldElement]) -> Vec<FieldElement> {
    let mut result = a.to_owned();
    ifft_permuted(&mut result);
    permute(&mut result);
    result
}

/// In-place permuted FFT.
pub fn fft_permuted(x: &mut [FieldElement]) {
    let root = FieldElement::root(x.len()).expect("No root of unity for input length");
    fft_permuted_root(&root, x);
}

/// Out-of-place permuted FFT with a cofactor.
pub fn fft_cofactor_permuted_out(
    cofactor: &FieldElement,
    x: &[FieldElement],
    out: &mut [FieldElement],
) {
    // TODO: Use geometric_series
    let mut c = FieldElement::ONE;
    for (x, out) in x.iter().zip(out.iter_mut()) {
        *out = x * &c;
        c *= cofactor;
    }
    fft_permuted(out);
}

/// In-place permuted FFT with a cofactor.
pub fn fft_cofactor_permuted(cofactor: &FieldElement, x: &mut [FieldElement]) {
    // TODO: Use geometric_series
    let mut c = FieldElement::ONE;
    for element in x.iter_mut() {
        *element *= &c;
        c *= cofactor;
    }
    fft_permuted(x);
}

/// In-place permuted inverse FFT with cofactor.
pub fn ifft_permuted(x: &mut [FieldElement]) {
    // OPT: make inv_root function.
    let inverse_root = FieldElement::root(x.len())
        .expect("No root of unity for input length")
        .inv()
        .expect("No inverse for FieldElement::ZERO");
    let inverse_length = FieldElement::from(x.len())
        .inv()
        .expect("No inverse length for empty list");
    fft_permuted_root(&inverse_root, x);
    for e in x {
        *e *= &inverse_length;
    }
}

// TODO: Cache-oblivious FFT
// See https://www.csd.uwo.ca/~moreno/CS433-CS9624/Resources/Implementing_FFTs_in_Practice.pdf
// My `sysctl hw` cache sizes: 32kiB, 256kiB, 8MiB, or 1k, 8k, 256k
// FieldElements.

// TODO: https://cnx.org/contents/4kChocHM@6/Efficient-FFT-Algorithm-and-Programming-Tricks

// TODO: Radix-4 and/or Split-radix FFT
// See https://en.wikipedia.org/wiki/Split-radix_FFT_algorithm
// See http://www.fftw.org/newsplit.pdf

fn fft_permuted_root(root: &FieldElement, coefficients: &mut [FieldElement]) {
    let n_elements = coefficients.len();
    debug_assert!(n_elements.is_power_of_two());
    debug_assert!(root.pow(n_elements).is_one());
    for layer in 0..n_elements.trailing_zeros() {
        let n_blocks = 1_usize << layer;
        let mut twiddle_factor = FieldElement::ONE;
        // OPT: In place combined update like gcd::mat_mul.
        let block_size = n_elements >> (layer + 1);
        let twiddle_factor_update = root.pow(block_size);
        for block in 0..n_blocks {
            // TODO: Do without casts.
            debug_assert!(block < n_blocks);
            let block_start = 2 * permute_index(n_blocks, block) * block_size;
            for i in block_start..block_start + block_size {
                let j = i + block_size;
                let left = coefficients[i].clone();
                let right = &coefficients[j] * &twiddle_factor;
                coefficients[i] = &left + &right;
                coefficients[j] = left - right;
            }
            twiddle_factor *= &twiddle_factor_update;
        }
    }
}

// Quickcheck needs pass by value
#[allow(clippy::needless_pass_by_value)]
#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck_macros::quickcheck;
    use zkp_macros_decl::u256h;
    use zkp_u256::U256;

    // O(n^2) reference implementation evaluating
    //     x_i' = Sum_j x_j * omega_n^(ij)
    // directly using Horner's method.
    fn reference_fft(x: &[FieldElement]) -> Vec<FieldElement> {
        let root = FieldElement::root(x.len()).unwrap();
        let mut result = Vec::with_capacity(x.len());
        let mut root_i = FieldElement::ONE;
        for _ in 0..x.len() {
            let mut sum = FieldElement::ZERO;
            let mut root_ij = FieldElement::ONE;
            for xj in x {
                sum += xj * &root_ij;
                root_ij *= &root_i;
            }
            result.push(sum);
            root_i *= &root;
        }
        result
    }

    #[test]
    fn test_permute() {
        assert_eq!(permute_index(4, 0), 0);
        assert_eq!(permute_index(4, 1), 2);
        assert_eq!(permute_index(4, 2), 1);
        assert_eq!(permute_index(4, 3), 3);
    }

    #[quickcheck]
    fn check_permute(size: usize, index: usize) {
        let size = size.next_power_of_two();
        let index = index % size;
        let permuted = permute_index(size, index);
        assert!(permuted < size);
        assert_eq!(permute_index(size, permuted), index);
    }

    #[test]
    fn fft_one_element_test() {
        let v = vec![FieldElement::from_hex_str("435767")];
        assert_eq!(fft(&v), v);
    }

    #[test]
    fn fft_two_element_test() {
        let a = FieldElement::from_hex_str("435767");
        let b = FieldElement::from_hex_str("123430");
        let v = vec![a.clone(), b.clone()];
        assert_eq!(fft(&v), vec![&a + &b, &a - &b]);
    }

    #[test]
    fn fft_four_element_test() {
        let v = vec![
            FieldElement::from_hex_str("4357670"),
            FieldElement::from_hex_str("1353542"),
            FieldElement::from_hex_str("3123423"),
            FieldElement::from_hex_str("9986432"),
        ];
        assert_eq!(fft(&v), reference_fft(&v));
    }

    #[test]
    fn fft_eight_element_test() {
        let v = vec![
            FieldElement::from_hex_str("4357670"),
            FieldElement::from_hex_str("1353542"),
            FieldElement::from_hex_str("3123423"),
            FieldElement::from_hex_str("9986432"),
            FieldElement::from_hex_str("43576702"),
            FieldElement::from_hex_str("23452346"),
            FieldElement::from_hex_str("31234230"),
            FieldElement::from_hex_str("99864321"),
        ];
        let expected = reference_fft(&v);
        assert_eq!(fft(&v), expected);
    }

    #[test]
    fn fft_test() {
        let cofactor = FieldElement::from(u256h!(
            "07696b8ff70e8e9285c76bef95d3ad76cdb29e213e4b5d9a9cd0afbd7cb29b5c"
        ));
        let vector = [
            FieldElement::from(u256h!(
                "008ee28fdbe9f1a7983bc1b600dfb9177c2d82d825023022ab4965d999bd3faf"
            )),
            FieldElement::from(u256h!(
                "037fa3db272cc54444894042223dcf260e1d1ec73fa9baea0e4572817fdf5751"
            )),
            FieldElement::from(u256h!(
                "054483fc9bcc150b421fae26530f8d3d2e97cf1918f534e67ef593038f683241"
            )),
            FieldElement::from(u256h!(
                "005b695b9001e5e62549557c48a23fd7f1706c1acdae093909d81451cd455b43"
            )),
            FieldElement::from(u256h!(
                "025079cb6cb547b63b67614dd2c78474c8a7b17b3bc53f7f7276984b6b67b18a"
            )),
            FieldElement::from(u256h!(
                "044729b25360c0025d244d31a5f144917e59f728a3d03dd4685c634d2b0e7cda"
            )),
            FieldElement::from(u256h!(
                "079b0e14d0bae81ff4fe55328fb09c4117bcd961cb60581eb6f2a770a42240ed"
            )),
            FieldElement::from(u256h!(
                "06c0926a786abb30b8f6e0eb9ef2278b910862717ed4beb35121d4741717e0e0"
            )),
        ];

        let res = fft(&vector);
        let expected = reference_fft(&vector);
        assert_eq!(res, expected);

        assert_eq!(
            U256::from(&res[0]),
            u256h!("06a1b7c038205cb38aaeea38662ae2259a19c14a7519bd522543f72dc7fa74b2")
        );
        assert_eq!(
            U256::from(&res[1]),
            u256h!("017884f169b20153de79a9c642d4e3259263f2e7ac5f85f5a8191f28d8f14544")
        );
        assert_eq!(
            U256::from(&res[2]),
            u256h!("03112a352e474819d491a13b700a07161eee580ff40098df978fa19f39b4fd2d")
        );
        assert_eq!(
            U256::from(&res[3]),
            u256h!("011606a821f418d13914c72b424141c5b88bdb184b0b5a55fc537587346c78a2")
        );
        assert_eq!(
            U256::from(&res[4]),
            u256h!("00dc2519322c102b8ad3628106a3ebef7c39f85215203bfc820c7a04a9645419")
        );
        assert_eq!(
            U256::from(&res[5]),
            u256h!("01df6a70d033d89376c96c45ce8dbbe4eeedce2d32636c29d3cb87b9e2074d00")
        );
        assert_eq!(
            U256::from(&res[6]),
            u256h!("00ee6a5e89e9307e64789e1a71c42105de12bfa104e32c5a381fe5c2697ffeec")
        );
        assert_eq!(
            U256::from(&res[7]),
            u256h!("048bad0760f8b52ee4f9a46964bcf1ba9439a9467b2576176b1319cec9f12db0")
        );

        let mut res = vector.clone();
        fft_cofactor_permuted(&cofactor, &mut res);
        permute(&mut res);

        assert_eq!(
            U256::from(&res[0]),
            u256h!("05d817ee1af8beff1880aad163a9912704d66e0c717a670c52db93da5ea34455")
        );
        assert_eq!(
            U256::from(&res[1]),
            u256h!("0631b16aceb1ee5711066df1ffafd9f5f451b0dc44c86e90005bc78e8bb4f861")
        );
        assert_eq!(
            U256::from(&res[2]),
            u256h!("01a30c98c149179cd16059ba201b99cf629d3e04844a50936006a185a67ad354")
        );
        assert_eq!(
            U256::from(&res[3]),
            u256h!("07a17b9035ff1ffd1f9e0bc52982effcd957bc07230830c10e51e906ed092f9e")
        );
        assert_eq!(
            U256::from(&res[4]),
            u256h!("01381787eccc6c77b0c5dff0b4b66dc0bb7d911bd705baf85f62001976e6ff27")
        );
        assert_eq!(
            U256::from(&res[5]),
            u256h!("009defa0822d287ce55035bb705319eb34e78180157e5297e6a46df9af8ef042")
        );
        assert_eq!(
            U256::from(&res[6]),
            u256h!("020b8317360c61abbc0bdce513eb42295402eb5dde3d13abfc0325f277f507bc")
        );
        assert_eq!(
            U256::from(&res[7]),
            u256h!("034738bd5956b1df55369cdc211109fd67e6ffd2ffbb08e856b1b4d1b1a2c6ae")
        );
    }

    #[quickcheck]
    fn ifft_is_inverse(v: Vec<FieldElement>) -> bool {
        if v.is_empty() {
            return true;
        }
        let truncated = &v[0..(1 + v.len()).next_power_of_two() / 2];
        truncated.to_vec() == ifft(&fft(truncated))
    }

    #[quickcheck]
    fn ifft_permuted_is_inverse(v: Vec<FieldElement>) {
        if v.is_empty() {
            return;
        }
        let original = &v[0..(1 + v.len()).next_power_of_two() / 2];
        let mut copy = original.to_owned();

        // TODO: Make it work without the permutes in between
        fft_permuted(&mut copy);
        permute(&mut copy);
        ifft_permuted(&mut copy);
        permute(&mut copy);

        assert_eq!(copy, original)
    }
}