Trait ark_ec::AffineRepr

source ·
pub trait AffineRepr: Eq + 'static + Sized + CanonicalSerialize + CanonicalDeserialize + Copy + Clone + Default + UniformRand + Send + Sync + Hash + Debug + Display + Zeroize + From<Self::Group> + Into<Self::Group> + Add<Self, Output = Self::Group> + for<'a> Add<&'a Self, Output = Self::Group> + Add<Self::Group, Output = Self::Group> + for<'a> Add<&'a Self::Group, Output = Self::Group> + Mul<Self::ScalarField, Output = Self::Group> + for<'a> Mul<&'a Self::ScalarField, Output = Self::Group> {
    type Config: CurveConfig<ScalarField = Self::ScalarField, BaseField = Self::BaseField>;
    type ScalarField: PrimeField + Into<<Self::ScalarField as PrimeField>::BigInt>;
    type BaseField: Field;
    type Group: CurveGroup<Config = Self::Config, Affine = Self, ScalarField = Self::ScalarField, BaseField = Self::BaseField> + From<Self> + Into<Self> + MulAssign<Self::ScalarField>;

Show 13 methods // Required methods fn xy(&self) -> Option<(&Self::BaseField, &Self::BaseField)>; fn zero() -> Self; fn generator() -> Self; fn from_random_bytes(bytes: &[u8]) -> Option<Self>; fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group; fn clear_cofactor(&self) -> Self; fn mul_by_cofactor_to_group(&self) -> Self::Group; // Provided methods fn x(&self) -> Option<&Self::BaseField> { ... } fn y(&self) -> Option<&Self::BaseField> { ... } fn is_zero(&self) -> bool { ... } fn into_group(self) -> Self::Group { ... } fn mul_by_cofactor(&self) -> Self { ... } fn mul_by_cofactor_inv(&self) -> Self { ... }
}
Expand description

The canonical representation of an elliptic curve group element. This should represent the affine coordinates of the point corresponding to this group element.

The point is guaranteed to be in the correct prime order subgroup.

Required Associated Types§

source

type Config: CurveConfig<ScalarField = Self::ScalarField, BaseField = Self::BaseField>

source

type ScalarField: PrimeField + Into<<Self::ScalarField as PrimeField>::BigInt>

source

type BaseField: Field

The finite field over which this curve is defined.

source

type Group: CurveGroup<Config = Self::Config, Affine = Self, ScalarField = Self::ScalarField, BaseField = Self::BaseField> + From<Self> + Into<Self> + MulAssign<Self::ScalarField>

The projective representation of points on this curve.

Required Methods§

source

fn xy(&self) -> Option<(&Self::BaseField, &Self::BaseField)>

Returns the x and y coordinates of this affine point.

source

fn zero() -> Self

Returns the point at infinity.

source

fn generator() -> Self

Returns a fixed generator of unknown exponent.

source

fn from_random_bytes(bytes: &[u8]) -> Option<Self>

Returns a group element if the set of bytes forms a valid group element, otherwise returns None. This function is primarily intended for sampling random group elements from a hash-function or RNG output.

source

fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group

Performs scalar multiplication of this element with mixed addition.

source

fn clear_cofactor(&self) -> Self

Performs cofactor clearing. The default method is simply to multiply by the cofactor. For some curve families more efficient methods exist.

source

fn mul_by_cofactor_to_group(&self) -> Self::Group

Multiplies this element by the cofactor and output the resulting projective element.

Provided Methods§

source

fn x(&self) -> Option<&Self::BaseField>

Returns the x coordinate of this affine point.

source

fn y(&self) -> Option<&Self::BaseField>

Returns the y coordinate of this affine point.

source

fn is_zero(&self) -> bool

Is self the point at infinity?

source

fn into_group(self) -> Self::Group

Converts self into the projective representation.

source

fn mul_by_cofactor(&self) -> Self

Multiplies this element by the cofactor.

source

fn mul_by_cofactor_inv(&self) -> Self

Multiplies this element by the inverse of the cofactor in Self::ScalarField.

Implementors§

source§

impl<P: SWCurveConfig> AffineRepr for ark_ec::models::short_weierstrass::Affine<P>

source§

impl<P: TECurveConfig> AffineRepr for ark_ec::models::twisted_edwards::Affine<P>