pub trait FftField: Field {
const GENERATOR: Self;
const TWO_ADICITY: u32;
const TWO_ADIC_ROOT_OF_UNITY: Self;
const SMALL_SUBGROUP_BASE: Option<u32> = None;
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None;
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> = None;
// Provided method
fn get_root_of_unity(n: u64) -> Option<Self> { ... }
}
Expand description
The interface for fields that are able to be used in FFTs.
Required Associated Constants§
sourceconst TWO_ADICITY: u32
const TWO_ADICITY: u32
Let N
be the size of the multiplicative group defined by the field.
Then TWO_ADICITY
is the two-adicity of N
, i.e. the integer s
such that N = 2^s * t
for some odd integer t
.
sourceconst TWO_ADIC_ROOT_OF_UNITY: Self
const TWO_ADIC_ROOT_OF_UNITY: Self
2^s root of unity computed by GENERATOR^t
Provided Associated Constants§
sourceconst SMALL_SUBGROUP_BASE: Option<u32> = None
const SMALL_SUBGROUP_BASE: Option<u32> = None
An integer b
such that there exists a multiplicative subgroup
of size b^k
for some integer k
.
sourceconst SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None
The integer k
such that there exists a multiplicative subgroup
of size Self::SMALL_SUBGROUP_BASE^k
.
sourceconst LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> = None
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> = None
GENERATOR^((MODULUS-1) / (2^s * SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)) Used for mixed-radix FFT.
Provided Methods§
sourcefn get_root_of_unity(n: u64) -> Option<Self>
fn get_root_of_unity(n: u64) -> Option<Self>
Returns the root of unity of order n, if one exists.
If no small multiplicative subgroup is defined, this is the 2-adic root
of unity of order n (for n a power of 2).
If a small multiplicative subgroup is defined, this is the root of unity
of order n for the larger subgroup generated by
FftConfig::LARGE_SUBGROUP_ROOT_OF_UNITY
(for n = 2^i * FftConfig::SMALL_SUBGROUP_BASE^j for some i, j).