Struct ark_poly::domain::radix2::Radix2EvaluationDomain
source · pub struct Radix2EvaluationDomain<F: FftField> {
pub size: u64,
pub log_size_of_group: u32,
pub size_as_field_element: F,
pub size_inv: F,
pub group_gen: F,
pub group_gen_inv: F,
pub offset: F,
pub offset_inv: F,
pub offset_pow_size: F,
}
Expand description
Defines a domain over which finite field (I)FFTs can be performed. Works only for fields that have a large multiplicative subgroup of size that is a power-of-2.
Fields§
§size: u64
The size of the domain.
log_size_of_group: u32
log_2(self.size)
.
size_as_field_element: F
Size of the domain as a field element.
size_inv: F
Inverse of the size in the field.
group_gen: F
A generator of the subgroup.
group_gen_inv: F
Inverse of the generator of the subgroup.
offset: F
Offset that specifies the coset.
offset_inv: F
Inverse of the offset that specifies the coset.
offset_pow_size: F
Constant coefficient for the vanishing polynomial.
Equals self.offset^self.size
.
Trait Implementations§
source§impl<F: FftField> CanonicalDeserialize for Radix2EvaluationDomain<F>
impl<F: FftField> CanonicalDeserialize for Radix2EvaluationDomain<F>
source§fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate
) -> Result<Self, SerializationError>
fn deserialize_with_mode<R: Read>( reader: R, compress: Compress, validate: Validate ) -> Result<Self, SerializationError>
The general deserialize method that takes in customization flags.
fn deserialize_compressed<R>(reader: R) -> Result<Self, SerializationError>where R: Read,
fn deserialize_compressed_unchecked<R>( reader: R ) -> Result<Self, SerializationError>where R: Read,
fn deserialize_uncompressed<R>(reader: R) -> Result<Self, SerializationError>where R: Read,
fn deserialize_uncompressed_unchecked<R>( reader: R ) -> Result<Self, SerializationError>where R: Read,
source§impl<F: FftField> CanonicalSerialize for Radix2EvaluationDomain<F>
impl<F: FftField> CanonicalSerialize for Radix2EvaluationDomain<F>
source§fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: Compress
) -> Result<(), SerializationError>
fn serialize_with_mode<W: Write>( &self, writer: W, compress: Compress ) -> Result<(), SerializationError>
The general serialize method that takes in customization flags.
fn serialized_size(&self, compress: Compress) -> usize
fn serialize_compressed<W>(&self, writer: W) -> Result<(), SerializationError>where W: Write,
fn compressed_size(&self) -> usize
fn serialize_uncompressed<W>(&self, writer: W) -> Result<(), SerializationError>where W: Write,
fn uncompressed_size(&self) -> usize
source§impl<F: Clone + FftField> Clone for Radix2EvaluationDomain<F>
impl<F: Clone + FftField> Clone for Radix2EvaluationDomain<F>
source§fn clone(&self) -> Radix2EvaluationDomain<F>
fn clone(&self) -> Radix2EvaluationDomain<F>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<F: FftField> Debug for Radix2EvaluationDomain<F>
impl<F: FftField> Debug for Radix2EvaluationDomain<F>
source§impl<F: FftField> EvaluationDomain<F> for Radix2EvaluationDomain<F>
impl<F: FftField> EvaluationDomain<F> for Radix2EvaluationDomain<F>
source§fn new(num_coeffs: usize) -> Option<Self>
fn new(num_coeffs: usize) -> Option<Self>
Construct a domain that is large enough for evaluations of a polynomial
having num_coeffs
coefficients.
source§fn get_coset(&self, offset: F) -> Option<Self>
fn get_coset(&self, offset: F) -> Option<Self>
Construct a coset domain from a subgroup domain
source§fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>
fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>
Return the size of a domain that is large enough for evaluations of a
polynomial having
num_coeffs
coefficients.source§fn log_size_of_group(&self) -> u64
fn log_size_of_group(&self) -> u64
Return log_2(size) of
self
.source§fn group_gen(&self) -> F
fn group_gen(&self) -> F
Return the generator for the multiplicative subgroup that defines this domain.
source§fn group_gen_inv(&self) -> F
fn group_gen_inv(&self) -> F
Return the group inverse of
self.group_gen()
.source§fn coset_offset(&self) -> F
fn coset_offset(&self) -> F
Return the group offset that defines this domain.
source§fn coset_offset_inv(&self) -> F
fn coset_offset_inv(&self) -> F
Return the inverse of
self.offset()
.source§fn coset_offset_pow_size(&self) -> F
fn coset_offset_pow_size(&self) -> F
Return
offset^size
.source§fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>)
fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>)
Compute a FFT, modifying the vector in place.
source§fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>)
fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>)
Compute a IFFT, modifying the vector in place.
source§fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F
fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F
Sample an element that is not in the domain.
source§fn new_coset(num_coeffs: usize, offset: F) -> Option<Self>
fn new_coset(num_coeffs: usize, offset: F) -> Option<Self>
Construct a coset domain that is large enough for evaluations of a polynomial
having
num_coeffs
coefficients.source§fn size_as_field_element(&self) -> F
fn size_as_field_element(&self) -> F
Return the size of
self
as a field element.source§fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F)
fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F)
Multiply the
i
-th element of coeffs
with g^i
.source§fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(
coeffs: &mut [T],
g: F,
c: F
)
fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>( coeffs: &mut [T], g: F, c: F )
Multiply the
i
-th element of coeffs
with c*g^i
.source§fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F>
fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F>
Evaluate all the lagrange polynomials defined by this domain at the
point
tau
. This is computed in time O(|domain|).
Then given the evaluations of a degree d polynomial P over this domain,
where d < |domain|, P(tau)
can be computed as
P(tau) = sum_{i in [|Domain|]} L_{i, Domain}(tau) * P(g^i)
.
L_{i, Domain}
is the value of the i-th lagrange coefficient
in the returned vector.source§fn vanishing_polynomial(&self) -> SparsePolynomial<F>
fn vanishing_polynomial(&self) -> SparsePolynomial<F>
Return the sparse vanishing polynomial.
source§fn evaluate_vanishing_polynomial(&self, tau: F) -> F
fn evaluate_vanishing_polynomial(&self, tau: F) -> F
This evaluates the vanishing polynomial for this domain at tau.
source§fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize
fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize
Given an index which assumes the first elements of this domain are the
elements of another (sub)domain,
this returns the actual index into this domain.
source§impl<F: PartialEq + FftField> PartialEq<Radix2EvaluationDomain<F>> for Radix2EvaluationDomain<F>
impl<F: PartialEq + FftField> PartialEq<Radix2EvaluationDomain<F>> for Radix2EvaluationDomain<F>
source§fn eq(&self, other: &Radix2EvaluationDomain<F>) -> bool
fn eq(&self, other: &Radix2EvaluationDomain<F>) -> bool
This method tests for
self
and other
values to be equal, and is used
by ==
.