Struct aws_sdk_kms::operation::create_key::builders::CreateKeyFluentBuilder
source · pub struct CreateKeyFluentBuilder { /* private fields */ }
Expand description
Fluent builder constructing a request to CreateKey
.
Creates a unique customer managed KMS key in your Amazon Web Services account and Region. You can use a KMS key in cryptographic operations, such as encryption and signing. Some Amazon Web Services services let you use KMS keys that you create and manage to protect your service resources.
A KMS key is a logical representation of a cryptographic key. In addition to the key material used in cryptographic operations, a KMS key includes metadata, such as the key ID, key policy, creation date, description, and key state. For details, see Managing keys in the Key Management Service Developer Guide
Use the parameters of CreateKey
to specify the type of KMS key, the source of its key material, its key policy, description, tags, and other properties.
KMS has replaced the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term.
To create different types of KMS keys, use the following guidance:
- Symmetric encryption KMS key
-
By default,
CreateKey
creates a symmetric encryption KMS key with key material that KMS generates. This is the basic and most widely used type of KMS key, and provides the best performance.To create a symmetric encryption KMS key, you don't need to specify any parameters. The default value for
KeySpec
,SYMMETRIC_DEFAULT
, the default value forKeyUsage
,ENCRYPT_DECRYPT
, and the default value forOrigin
,AWS_KMS
, create a symmetric encryption KMS key with KMS key material.If you need a key for basic encryption and decryption or you are creating a KMS key to protect your resources in an Amazon Web Services service, create a symmetric encryption KMS key. The key material in a symmetric encryption key never leaves KMS unencrypted. You can use a symmetric encryption KMS key to encrypt and decrypt data up to 4,096 bytes, but they are typically used to generate data keys and data keys pairs. For details, see
GenerateDataKey
andGenerateDataKeyPair
. - Asymmetric KMS keys
-
To create an asymmetric KMS key, use the
KeySpec
parameter to specify the type of key material in the KMS key. Then, use theKeyUsage
parameter to determine whether the KMS key will be used to encrypt and decrypt or sign and verify. You can't change these properties after the KMS key is created.Asymmetric KMS keys contain an RSA key pair, Elliptic Curve (ECC) key pair, or an SM2 key pair (China Regions only). The private key in an asymmetric KMS key never leaves KMS unencrypted. However, you can use the
GetPublicKey
operation to download the public key so it can be used outside of KMS. KMS keys with RSA or SM2 key pairs can be used to encrypt or decrypt data or sign and verify messages (but not both). KMS keys with ECC key pairs can be used only to sign and verify messages. For information about asymmetric KMS keys, see Asymmetric KMS keys in the Key Management Service Developer Guide. - HMAC KMS key
-
To create an HMAC KMS key, set the
KeySpec
parameter to a key spec value for HMAC KMS keys. Then set theKeyUsage
parameter toGENERATE_VERIFY_MAC
. You must set the key usage even thoughGENERATE_VERIFY_MAC
is the only valid key usage value for HMAC KMS keys. You can't change these properties after the KMS key is created.HMAC KMS keys are symmetric keys that never leave KMS unencrypted. You can use HMAC keys to generate (
GenerateMac
) and verify (VerifyMac
) HMAC codes for messages up to 4096 bytes. - Multi-Region primary keys
- Imported key material
-
To create a multi-Region primary key in the local Amazon Web Services Region, use the
MultiRegion
parameter with a value ofTrue
. To create a multi-Region replica key, that is, a KMS key with the same key ID and key material as a primary key, but in a different Amazon Web Services Region, use theReplicateKey
operation. To change a replica key to a primary key, and its primary key to a replica key, use theUpdatePrimaryRegion
operation.You can create multi-Region KMS keys for all supported KMS key types: symmetric encryption KMS keys, HMAC KMS keys, asymmetric encryption KMS keys, and asymmetric signing KMS keys. You can also create multi-Region keys with imported key material. However, you can't create multi-Region keys in a custom key store.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
-
To import your own key material into a KMS key, begin by creating a KMS key with no key material. To do this, use the
Origin
parameter ofCreateKey
with a value ofEXTERNAL
. Next, useGetParametersForImport
operation to get a public key and import token. Use the wrapping public key to encrypt your key material. Then, useImportKeyMaterial
with your import token to import the key material. For step-by-step instructions, see Importing Key Material in the Key Management Service Developer Guide .You can import key material into KMS keys of all supported KMS key types: symmetric encryption KMS keys, HMAC KMS keys, asymmetric encryption KMS keys, and asymmetric signing KMS keys. You can also create multi-Region keys with imported key material. However, you can't import key material into a KMS key in a custom key store.
To create a multi-Region primary key with imported key material, use the
Origin
parameter ofCreateKey
with a value ofEXTERNAL
and theMultiRegion
parameter with a value ofTrue
. To create replicas of the multi-Region primary key, use theReplicateKey
operation. For instructions, see Importing key material into multi-Region keys. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide. - Custom key store
-
A custom key store lets you protect your Amazon Web Services resources using keys in a backing key store that you own and manage. When you request a cryptographic operation with a KMS key in a custom key store, the operation is performed in the backing key store using its cryptographic keys.
KMS supports CloudHSM key stores backed by an CloudHSM cluster and external key stores backed by an external key manager outside of Amazon Web Services. When you create a KMS key in an CloudHSM key store, KMS generates an encryption key in the CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you specify an existing encryption key in the external key manager.
Some external key managers provide a simpler method for creating a KMS key in an external key store. For details, see your external key manager documentation.
Before you create a KMS key in a custom key store, the
ConnectionState
of the key store must beCONNECTED
. To connect the custom key store, use theConnectCustomKeyStore
operation. To find theConnectionState
, use theDescribeCustomKeyStores
operation.To create a KMS key in a custom key store, use the
CustomKeyStoreId
. Use the defaultKeySpec
value,SYMMETRIC_DEFAULT
, and the defaultKeyUsage
value,ENCRYPT_DECRYPT
to create a symmetric encryption key. No other key type is supported in a custom key store.To create a KMS key in an CloudHSM key store, use the
Origin
parameter with a value ofAWS_CLOUDHSM
. The CloudHSM cluster that is associated with the custom key store must have at least two active HSMs in different Availability Zones in the Amazon Web Services Region.To create a KMS key in an external key store, use the
Origin
parameter with a value ofEXTERNAL_KEY_STORE
and anXksKeyId
parameter that identifies an existing external key.Some external key managers provide a simpler method for creating a KMS key in an external key store. For details, see your external key manager documentation.
Cross-account use: No. You cannot use this operation to create a KMS key in a different Amazon Web Services account.
Required permissions: kms:CreateKey (IAM policy). To use the Tags
parameter, kms:TagResource (IAM policy). For examples and information about related permissions, see Allow a user to create KMS keys in the Key Management Service Developer Guide.
Related operations:
-
DescribeKey
-
ListKeys
-
ScheduleKeyDeletion
Eventual consistency: The KMS API follows an eventual consistency model. For more information, see KMS eventual consistency.
Implementations§
source§impl CreateKeyFluentBuilder
impl CreateKeyFluentBuilder
sourcepub fn as_input(&self) -> &CreateKeyInputBuilder
pub fn as_input(&self) -> &CreateKeyInputBuilder
Access the CreateKey as a reference.
sourcepub async fn send(
self
) -> Result<CreateKeyOutput, SdkError<CreateKeyError, HttpResponse>>
pub async fn send( self ) -> Result<CreateKeyOutput, SdkError<CreateKeyError, HttpResponse>>
Sends the request and returns the response.
If an error occurs, an SdkError
will be returned with additional details that
can be matched against.
By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.
sourcepub fn customize(
self
) -> CustomizableOperation<CreateKeyOutput, CreateKeyError, Self>
pub fn customize( self ) -> CustomizableOperation<CreateKeyOutput, CreateKeyError, Self>
Consumes this builder, creating a customizable operation that can be modified before being sent.
sourcepub fn policy(self, input: impl Into<String>) -> Self
pub fn policy(self, input: impl Into<String>) -> Self
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn set_policy(self, input: Option<String>) -> Self
pub fn set_policy(self, input: Option<String>) -> Self
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn get_policy(&self) -> &Option<String>
pub fn get_policy(&self) -> &Option<String>
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn description(self, input: impl Into<String>) -> Self
pub fn description(self, input: impl Into<String>) -> Self
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn set_description(self, input: Option<String>) -> Self
pub fn set_description(self, input: Option<String>) -> Self
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn get_description(&self) -> &Option<String>
pub fn get_description(&self) -> &Option<String>
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn key_usage(self, input: KeyUsageType) -> Self
pub fn key_usage(self, input: KeyUsageType) -> Self
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn set_key_usage(self, input: Option<KeyUsageType>) -> Self
pub fn set_key_usage(self, input: Option<KeyUsageType>) -> Self
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn get_key_usage(&self) -> &Option<KeyUsageType>
pub fn get_key_usage(&self) -> &Option<KeyUsageType>
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn customer_master_key_spec(self, input: CustomerMasterKeySpec) -> Self
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn customer_master_key_spec(self, input: CustomerMasterKeySpec) -> Self
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn set_customer_master_key_spec(
self,
input: Option<CustomerMasterKeySpec>
) -> Self
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn set_customer_master_key_spec( self, input: Option<CustomerMasterKeySpec> ) -> Self
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn get_customer_master_key_spec(&self) -> &Option<CustomerMasterKeySpec>
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn get_customer_master_key_spec(&self) -> &Option<CustomerMasterKeySpec>
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn key_spec(self, input: KeySpec) -> Self
pub fn key_spec(self, input: KeySpec) -> Self
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn set_key_spec(self, input: Option<KeySpec>) -> Self
pub fn set_key_spec(self, input: Option<KeySpec>) -> Self
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn get_key_spec(&self) -> &Option<KeySpec>
pub fn get_key_spec(&self) -> &Option<KeySpec>
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn origin(self, input: OriginType) -> Self
pub fn origin(self, input: OriginType) -> Self
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn set_origin(self, input: Option<OriginType>) -> Self
pub fn set_origin(self, input: Option<OriginType>) -> Self
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn get_origin(&self) -> &Option<OriginType>
pub fn get_origin(&self) -> &Option<OriginType>
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn custom_key_store_id(self, input: impl Into<String>) -> Self
pub fn custom_key_store_id(self, input: impl Into<String>) -> Self
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn set_custom_key_store_id(self, input: Option<String>) -> Self
pub fn set_custom_key_store_id(self, input: Option<String>) -> Self
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn get_custom_key_store_id(&self) -> &Option<String>
pub fn get_custom_key_store_id(&self) -> &Option<String>
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn bypass_policy_lockout_safety_check(self, input: bool) -> Self
pub fn bypass_policy_lockout_safety_check(self, input: bool) -> Self
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
sourcepub fn set_bypass_policy_lockout_safety_check(self, input: Option<bool>) -> Self
pub fn set_bypass_policy_lockout_safety_check(self, input: Option<bool>) -> Self
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
sourcepub fn get_bypass_policy_lockout_safety_check(&self) -> &Option<bool>
pub fn get_bypass_policy_lockout_safety_check(&self) -> &Option<bool>
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
Appends an item to Tags
.
To override the contents of this collection use set_tags
.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
sourcepub fn multi_region(self, input: bool) -> Self
pub fn multi_region(self, input: bool) -> Self
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn set_multi_region(self, input: Option<bool>) -> Self
pub fn set_multi_region(self, input: Option<bool>) -> Self
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn get_multi_region(&self) -> &Option<bool>
pub fn get_multi_region(&self) -> &Option<bool>
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn xks_key_id(self, input: impl Into<String>) -> Self
pub fn xks_key_id(self, input: impl Into<String>) -> Self
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
sourcepub fn set_xks_key_id(self, input: Option<String>) -> Self
pub fn set_xks_key_id(self, input: Option<String>) -> Self
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
sourcepub fn get_xks_key_id(&self) -> &Option<String>
pub fn get_xks_key_id(&self) -> &Option<String>
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
Trait Implementations§
source§impl Clone for CreateKeyFluentBuilder
impl Clone for CreateKeyFluentBuilder
source§fn clone(&self) -> CreateKeyFluentBuilder
fn clone(&self) -> CreateKeyFluentBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more