pub struct Primes<const N: usize>(/* private fields */);
Expand description
A wrapper around an array that consists of the first N
primes.
Can use those primes for related computations.
Ensures that N
is non-zero at compile time.
§Examples
Basic usage:
const PRIMES: Primes<3> = Primes::new();
assert_eq!(PRIMES[2], 5);
assert_eq!(PRIMES.as_array(), &[2, 3, 5]);
Reuse sieved primes for other computations:
const CACHE: Primes<100> = Primes::new();
const PRIME_CHECK: Option<bool> = CACHE.is_prime(541);
const PRIME_COUNT: Option<usize> = CACHE.prime_pi(200);
assert_eq!(PRIME_CHECK, Some(true));
assert_eq!(PRIME_COUNT, Some(46));
// If questions are asked about numbers outside the cache it returns None
assert_eq!(CACHE.is_prime(1000), None);
assert_eq!(CACHE.prime_pi(1000), None);
Implementations§
Source§impl<const N: usize> Primes<N>
impl<const N: usize> Primes<N>
Sourcepub const fn new() -> Self
pub const fn new() -> Self
Generates a new instance that contains the first N
primes.
Uses a segmented sieve of Eratosthenes.
§Examples
Basic usage:
const PRIMES: Primes<3> = Primes::new();
assert_eq!(PRIMES.as_array(), &[2, 3, 5]);
Determine N
through type inference
assert_eq!(Primes::new().as_array(), &[2, 3, 5, 7, 11]);
Specify N
manually
let primes = Primes::<5>::new();
assert_eq!(primes.as_array(), &[2, 3, 5, 7, 11]);
§Errors
It is a compile error to use an N
of 0.
const NO_PRIMES: Primes<0> = Primes::new();
Sourcepub const fn is_prime(&self, n: u32) -> Option<bool>
pub const fn is_prime(&self, n: u32) -> Option<bool>
Returns whether n
is prime, if it is smaller than or equal to the largest prime in self
.
Uses a binary search.
§Example
Basic usage:
const PRIMES: Primes<100> = Primes::new();
const TMOLTUAE: Option<bool> = PRIMES.is_prime(42);
assert_eq!(PRIMES.is_prime(13), Some(true));
assert_eq!(TMOLTUAE, Some(false));
// 1000 is larger than 541, the largest prime in the cache,
// so we don't know whether it's prime.
assert_eq!(PRIMES.is_prime(1000), None);
Sourcepub const fn prime_pi(&self, n: u32) -> Option<usize>
pub const fn prime_pi(&self, n: u32) -> Option<usize>
Returns the number of primes smaller than or equal to n
, if it’s smaller than or equal to the largest prime in self
.
Uses a binary search to count the primes.
§Example
Basic usage:
const CACHE: Primes<100> = Primes::new();
const COUNT1: Option<usize> = CACHE.prime_pi(500);
const COUNT2: Option<usize> = CACHE.prime_pi(11);
const OUT_OF_BOUNDS: Option<usize> = CACHE.prime_pi(1_000);
assert_eq!(COUNT1, Some(95));
assert_eq!(COUNT2, Some(5));
assert_eq!(OUT_OF_BOUNDS, None);
Sourcepub fn prime_factorization(&self, number: u32) -> PrimeFactorization<'_> ⓘ
pub fn prime_factorization(&self, number: u32) -> PrimeFactorization<'_> ⓘ
Returns an iterator over the prime factors of the given number in increasing order as well as their multiplicities.
If a number contains prime factors larger than the largest prime in self
,
they will not be yielded by the iterator, but their product can be retrieved by calling
remainder
on the iterator.
If you do not need to know the multiplicity of each prime factor,
it may be faster to use prime_factors
.
§Examples
Basic usage:
// Contains the primes [2, 3, 5]
const CACHE: Primes<3> = Primes::new();
assert_eq!(CACHE.prime_factorization(15).collect::<Vec<_>>(), &[(3, 1), (5, 1)]);
The second element of the returned tuples is the multiplicity of the prime in the number:
// 1024 = 2^10
assert_eq!(CACHE.prime_factorization(1024).next(), Some((2, 10)));
294 has 7 as a prime factor, but 7 is not in the cache:
// 294 = 2*3*7*7
let mut factorization_of_294 = CACHE.prime_factorization(294);
// only 2 and 3 are in the cache:
assert_eq!(factorization_of_294.by_ref().collect::<Vec<_>>(), &[(2, 1), (3, 1)]);
// the factor of 7*7 can be found with the remainder function:
assert_eq!(factorization_of_294.remainder(), Some(49));
Sourcepub fn prime_factors(&self, number: u32) -> PrimeFactors<'_> ⓘ
pub fn prime_factors(&self, number: u32) -> PrimeFactors<'_> ⓘ
Returns an iterator over all the prime factors of the given number in increasing order.
If a number contains prime factors larger than the largest prime in self
,
they will not be yielded by the iterator, but their product can be retrieved by calling
remainder
on the iterator.
If you also wish to know the multiplicity of each prime factor of the number,
take a look at prime_factorization
.
§Examples
// Contains [2, 3, 5]
const CACHE: Primes<3> = Primes::new();
assert_eq!(CACHE.prime_factors(3*5).collect::<Vec<_>>(), &[3, 5]);
assert_eq!(CACHE.prime_factors(2*2*2*2*3).collect::<Vec<_>>(), &[2, 3]);
294 has 7 as a prime factor, but 7 is not in the cache:
// 294 = 2*3*7*7
let mut factors_of_294 = CACHE.prime_factors(294);
// only 2 and 3 are in the cache
assert_eq!(factors_of_294.by_ref().collect::<Vec<_>>(), &[2, 3]);
// the factor of 7*7 can be found with the remainder function
assert_eq!(factors_of_294.remainder(), Some(49));
Sourcepub const fn previous_prime(&self, n: u32) -> Option<u32>
pub const fn previous_prime(&self, n: u32) -> Option<u32>
Returns the largest prime less than n
.
If n
is 0, 1, 2, or larger than the largest prime in self
this returns None
.
Uses a binary search.
§Example
const CACHE: Primes<100> = Primes::new();
const PREV400: Option<u32> = CACHE.previous_prime(400);
assert_eq!(PREV400, Some(397));
Sourcepub const fn next_prime(&self, n: u32) -> Option<u32>
pub const fn next_prime(&self, n: u32) -> Option<u32>
Returns the smallest prime greater than n
.
If n
is larger than or equal to the largest prime in self
this returns None
.
Uses a binary search.
§Example
const CACHE: Primes<100> = Primes::new();
const NEXT: Option<u32> = CACHE.next_prime(400);
assert_eq!(NEXT, Some(401));
Sourcepub const fn binary_search(&self, target: u32) -> Result<usize, usize>
pub const fn binary_search(&self, target: u32) -> Result<usize, usize>
Searches the underlying array of primes for the target integer.
If the target is found it returns a Result::Ok
that contains the index of the matching element.
If the target is not found in the array a Result::Err
is returned that indicates where the
target could be inserted into the array while maintaining the sorted order.
§Example
Basic usage:
// [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
const PRIMES: Primes<10> = Primes::new();
const WHERE_29: Result<usize, usize> = PRIMES.binary_search(29);
const WHERE_6: Result<usize, usize> = PRIMES.binary_search(6);
const WHERE_1000: Result<usize, usize> = PRIMES.binary_search(1_000);
assert_eq!(WHERE_29, Ok(9));
assert_eq!(WHERE_6, Err(3));
assert_eq!(WHERE_1000, Err(10));
Sourcepub const fn into_array(self) -> [u32; N]
pub const fn into_array(self) -> [u32; N]
Converts self
into an array of size N
.
§Example
Basic usage:
const PRIMES: [u32; 5] = Primes::new().into_array();
assert_eq!(PRIMES, [2, 3, 5, 7, 11]);
Sourcepub const fn as_slice(&self) -> &[u32]
pub const fn as_slice(&self) -> &[u32]
Returns a slice that contains the entire underlying array.
Sourcepub fn iter(&self) -> PrimesIter<'_> ⓘ
pub fn iter(&self) -> PrimesIter<'_> ⓘ
Returns a borrowing iterator over the primes.
§Example
Basic usage:
const PRIMES: Primes<10> = Primes::new();
let mut primes = PRIMES.iter();
assert_eq!(primes.nth(5), Some(&13));
assert_eq!(primes.next(), Some(&17));
assert_eq!(primes.as_slice(), &[19, 23, 29]);
Sourcepub const fn get(&self, index: usize) -> Option<&u32>
pub const fn get(&self, index: usize) -> Option<&u32>
Returns a reference to the element at the given index if it is within bounds.
§Example
Basic usage:
const PRIMES: Primes<5> = Primes::new();
const THIRD_PRIME: Option<&u32> = PRIMES.get(2);
assert_eq!(THIRD_PRIME, Some(&5));
Sourcepub const fn last(&self) -> &u32
pub const fn last(&self) -> &u32
Returns a reference to the last prime in self
. This is also the largest prime in self
.
§Example
Basic usage:
const PRIMES: Primes<5> = Primes::new();
assert_eq!(PRIMES.last(), &11);
Sourcepub const fn len(&self) -> usize
pub const fn len(&self) -> usize
Returns the number of primes in self
.
§Example
Basic usage:
const PRIMES: Primes<5> = Primes::new();
assert_eq!(PRIMES.len(), 5);
Sourcepub const fn totient(&self, n: u32) -> Result<u32, PartialTotient>
pub const fn totient(&self, n: u32) -> Result<u32, PartialTotient>
Returns the value of the Euler totient function of n
:
the number of positive integers up to n
that are relatively prime to it.
§Example
const CACHE: Primes<3> = Primes::new();
const TOTIENT_OF_6: Result<u32, PartialTotient> = CACHE.totient(2*3);
assert_eq!(TOTIENT_OF_6, Ok(2));
§Errors
The totient function is computed here as the product over all factors of the form p^(k-1)*(p-1) where
p is the primes in the prime factorization of n
and k is their multiplicity.
If n
contains prime factors that are not part of self
, a Result::Err
is returned
that contains a PartialTotient
struct that contains the result from using only the primes in self
,
as well as the product of the prime factors that are not included in self
.
§Error example
The number 2450 is equal to 2*5*5*7*7. If the cache does not contain 7 the function runs out of primes after 5, and can not finish the computation:
// Contains the primes [2, 3, 5]
const CACHE: Primes<3> = Primes::new();
const TOTIENT_OF_2450: Result<u32, PartialTotient> = CACHE.totient(2*5*5*7*7);
assert_eq!(
TOTIENT_OF_2450,
Err( PartialTotient {
// totient(2*5*5) = 20
totient_using_known_primes: 20,
product_of_unknown_prime_factors: 49
})
);
Trait Implementations§
Source§impl<const N: usize> Archive for Primes<N>
impl<const N: usize> Archive for Primes<N>
Source§type Archived = ArchivedPrimes<N>
type Archived = ArchivedPrimes<N>
Source§type Resolver = PrimesResolver<N>
type Resolver = PrimesResolver<N>
Source§fn resolve(&self, resolver: Self::Resolver, out: Place<Self::Archived>)
fn resolve(&self, resolver: Self::Resolver, out: Place<Self::Archived>)
Source§const COPY_OPTIMIZATION: CopyOptimization<Self> = _
const COPY_OPTIMIZATION: CopyOptimization<Self> = _
serialize
. Read moreSource§impl<'de, const N: usize> Deserialize<'de> for Primes<N>
impl<'de, const N: usize> Deserialize<'de> for Primes<N>
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Source§impl<__D: Fallible + ?Sized, const N: usize> Deserialize<Primes<N>, __D> for Archived<Primes<N>>
impl<__D: Fallible + ?Sized, const N: usize> Deserialize<Primes<N>, __D> for Archived<Primes<N>>
Source§impl<const N: usize> IntoBytes for Primes<N>
impl<const N: usize> IntoBytes for Primes<N>
Source§impl<'a, const N: usize> IntoIterator for &'a Primes<N>
impl<'a, const N: usize> IntoIterator for &'a Primes<N>
Source§impl<const N: usize> IntoIterator for Primes<N>
impl<const N: usize> IntoIterator for Primes<N>
Source§impl<const N: usize> KnownLayout for Primes<N>where
Self: Sized,
impl<const N: usize> KnownLayout for Primes<N>where
Self: Sized,
Source§type PointerMetadata = ()
type PointerMetadata = ()
Self
. Read moreSource§impl<const N: usize> Ord for Primes<N>
impl<const N: usize> Ord for Primes<N>
Source§impl<const N: usize> PartialOrd for Primes<N>
impl<const N: usize> PartialOrd for Primes<N>
impl<const N: usize> Copy for Primes<N>
impl<const N: usize> Eq for Primes<N>
impl<const N: usize> Immutable for Primes<N>
impl<const N: usize> StructuralPartialEq for Primes<N>
Auto Trait Implementations§
impl<const N: usize> Freeze for Primes<N>
impl<const N: usize> RefUnwindSafe for Primes<N>
impl<const N: usize> Send for Primes<N>
impl<const N: usize> Sync for Primes<N>
impl<const N: usize> Unpin for Primes<N>
impl<const N: usize> UnwindSafe for Primes<N>
Blanket Implementations§
Source§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
Source§type ArchivedMetadata = ()
type ArchivedMetadata = ()
Source§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> ArchiveUnsized for Twhere
T: Archive,
impl<T> ArchiveUnsized for Twhere
T: Archive,
Source§type Archived = <T as Archive>::Archived
type Archived = <T as Archive>::Archived
Archive
, it may be
unsized. Read more