ncollide_transformation 0.9.0

2 and 3-dimensional collision detection library in Rust: module for transforming a geometric entity to another one by means of approximation/fitting.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
use std::cmp::Ordering;
use num::Bounded;

use alga::general::Real;
use na::{Matrix3, Point2, Point3, Vector3};
use na;
use utils;
use procedural::{IndexBuffer, TriMesh};
use convex_hull_utils::{denormalize, indexed_support_point_id, normalize, support_point_id};

/// Computes the convariance matrix of a set of points.
fn cov<N: Real>(pts: &[Point3<N>]) -> Matrix3<N> {
    let center = utils::center(pts);
    let mut cov: Matrix3<N> = na::zero();
    let normalizer: N = na::convert(1.0 / (pts.len() as f64));

    for p in pts.iter() {
        let cp = *p - center;
        cov = cov + cp * (cp * normalizer).transpose();
    }

    cov
}

/// Computes the convex hull of a set of 3d points.
pub fn convex_hull3<N: Real>(points: &[Point3<N>]) -> TriMesh<Point3<N>> {
    assert!(
        points.len() != 0,
        "Cannot compute the convex hull of an empty set of point."
    );

    let mut points = points.to_vec();

    let (norm_center, norm_diag) = normalize(&mut points[..]);

    let mut undecidable_points = Vec::new();
    let mut horizon_loop_facets = Vec::new();
    let mut horizon_loop_ids = Vec::new();
    let mut removed_facets = Vec::new();

    let mut triangles;
    let denormalizer;

    match get_initial_mesh(&mut points[..], &mut undecidable_points) {
        InitialMesh::Facets(facets, denorm) => {
            triangles = facets;
            denormalizer = denorm;
        }
        InitialMesh::ResultMesh(mut mesh) => {
            denormalize(&mut mesh.coords[..], &norm_center, norm_diag);
            return mesh;
        }
    }

    let mut i = 0;
    while i != triangles.len() {
        horizon_loop_facets.clear();
        horizon_loop_ids.clear();

        if !triangles[i].valid {
            i = i + 1;
            continue;
        }

        // FIXME: use triangles[i].furthest_point instead.
        let pt_id = indexed_support_point_id(
            &triangles[i].normal,
            &points[..],
            &triangles[i].visible_points[..],
        );

        match pt_id {
            Some(point) => {
                removed_facets.clear();

                triangles[i].valid = false;
                removed_facets.push(i);

                for j in 0usize..3 {
                    compute_silhouette(
                        triangles[i].adj[j],
                        triangles[i].indirect_adj_id[j],
                        point,
                        &mut horizon_loop_facets,
                        &mut horizon_loop_ids,
                        &points[..],
                        &mut removed_facets,
                        &mut triangles[..],
                    );
                }

                if horizon_loop_facets.is_empty() {
                    // Due to inaccuracies, the silhouette could not be computed
                    // (the point seems to be visible from… every triangle).
                    let mut any_valid = false;
                    for j in i + 1..triangles.len() {
                        if triangles[j].valid {
                            any_valid = true;
                        }
                    }

                    if any_valid {
                        println!("Warning: exitting an unfinished work.");
                    }

                    // FIXME: this is verry harsh.
                    triangles[i].valid = true;
                    break;
                }

                attach_and_push_facets3(
                    &horizon_loop_facets[..],
                    &horizon_loop_ids[..],
                    point,
                    &points[..],
                    &mut triangles,
                    &removed_facets[..],
                    &mut undecidable_points,
                );
            }
            None => {}
        }

        i = i + 1;
    }

    let mut idx = Vec::new();

    for facet in triangles.iter() {
        if facet.valid {
            idx.push(Point3::new(
                facet.pts[0] as u32,
                facet.pts[1] as u32,
                facet.pts[2] as u32,
            ));
        }
    }

    utils::remove_unused_points(&mut points, &mut idx[..]);

    assert!(points.len() != 0, "Internal error: empty output mesh.");

    for point in points.iter_mut() {
        *point = denormalizer * *point;
    }

    denormalize(&mut points[..], &norm_center, norm_diag);

    TriMesh::new(points, None, None, Some(IndexBuffer::Unified(idx)))
}

enum InitialMesh<N: Real> {
    Facets(Vec<TriangleFacet<N>>, Matrix3<N>),
    ResultMesh(TriMesh<Point3<N>>),
}

fn build_degenerate_mesh_point<N: Real>(point: Point3<N>) -> TriMesh<Point3<N>> {
    let ta = Point3::new(0u32, 0, 0);
    let tb = Point3::new(0u32, 0, 0);

    TriMesh::new(
        vec![point],
        None,
        None,
        Some(IndexBuffer::Unified(vec![ta, tb])),
    )
}

fn build_degenerate_mesh_segment<N: Real>(
    dir: &Vector3<N>,
    points: &[Point3<N>],
) -> TriMesh<Point3<N>> {
    let a = utils::point_cloud_support_point(dir, points);
    let b = utils::point_cloud_support_point(&-*dir, points);

    let ta = Point3::new(0u32, 1, 0);
    let tb = Point3::new(1u32, 0, 0);

    TriMesh::new(
        vec![a, b],
        None,
        None,
        Some(IndexBuffer::Unified(vec![ta, tb])),
    )
}

fn get_initial_mesh<N: Real>(
    points: &mut [Point3<N>],
    undecidable: &mut Vec<usize>,
) -> InitialMesh<N> {
    /*
     * Compute the eigenvectors to see if the input datas live on a subspace.
     */
    let cov_mat = cov(points);
    let eig = cov_mat.symmetric_eigen();
    let (eigvec, eigval) = (eig.eigenvectors, eig.eigenvalues);
    let mut eigpairs = [
        (eigvec.column(0).into_owned(), eigval[0]),
        (eigvec.column(1).into_owned(), eigval[1]),
        (eigvec.column(2).into_owned(), eigval[2]),
    ];

    /*
     * Sort in deacreasing order wrt. eigenvalues.
     */
    eigpairs.sort_by(|a, b| {
        if a.1 > b.1 {
            Ordering::Less // `Less` and `Greater` are reversed.
        } else if a.1 < b.1 {
            Ordering::Greater
        } else {
            Ordering::Equal
        }
    });

    /*
     * Count the dimension the data lives in.
     */
    let mut dimension = 0;
    while dimension < 3 {
        if relative_eq!(
            eigpairs[dimension].1,
            na::zero(),
            epsilon = na::convert(1.0e-7f64)
        ) {
            break;
        }

        dimension = dimension + 1;
    }

    match dimension {
        0 => {
            // The hull is a point.
            InitialMesh::ResultMesh(build_degenerate_mesh_point(points[0].clone()))
        }
        1 => {
            // The hull is a segment.
            InitialMesh::ResultMesh(build_degenerate_mesh_segment(&eigpairs[0].0, points))
        }
        2 => {
            // The hull is a triangle.
            // Project into the principal plane…
            let axis1 = &eigpairs[0].0;
            let axis2 = &eigpairs[1].0;

            let mut subspace_points = Vec::with_capacity(points.len());

            for point in points.iter() {
                subspace_points.push(Point2::new(
                    na::dot(&point.coords, axis1),
                    na::dot(&point.coords, axis2),
                ))
            }

            // … and compute the 2d convex hull.
            let idx = ::convex_hull2_idx(&subspace_points[..]);

            // Finalize the result, triangulating the polyline.
            let npoints = idx.len();
            let coords = idx.into_iter().map(|i| points[i].clone()).collect();
            let mut triangles = Vec::with_capacity(npoints + npoints - 4);

            let a = 0u32;

            for id in 1u32..npoints as u32 - 1 {
                triangles.push(Point3::new(a, id, id + 1));
                triangles.push(Point3::new(id, a, id + 1));
            }

            InitialMesh::ResultMesh(TriMesh::new(
                coords,
                None,
                None,
                Some(IndexBuffer::Unified(triangles)),
            ))
        }
        3 => {
            // The hull is a polyedra.
            // Find a initial triangle lying on the principal plane…
            let _1: N = na::one();
            let diag = Vector3::new(_1 / eigval[0], _1 / eigval[1], _1 / eigval[2]);
            let diag = Matrix3::from_diagonal(&diag);
            let icov = eigvec * diag * eigvec.transpose();

            for point in points.iter_mut() {
                *point = Point3::origin() + icov * point.coords;
            }

            let p1 = support_point_id(&eigpairs[0].0, points).unwrap();
            let p2 = support_point_id(&-eigpairs[0].0, points).unwrap();

            let mut max_area = na::zero();
            let mut p3 = Bounded::max_value();

            for (i, point) in points.iter().enumerate() {
                let area = utils::triangle_area(&points[p1], &points[p2], point);

                if area > max_area {
                    max_area = area;
                    p3 = i;
                }
            }

            assert!(
                p3 != Bounded::max_value(),
                "Internal convex hull error: no triangle found."
            );

            // Build two facets with opposite normals
            let mut f1 = TriangleFacet::new(p1, p2, p3, points);
            let mut f2 = TriangleFacet::new(p2, p1, p3, points);

            // Link the facets together
            f1.set_facets_adjascency(1, 1, 1, 0, 2, 1);
            f2.set_facets_adjascency(0, 0, 0, 0, 2, 1);

            let mut facets = vec![f1, f2];

            // … and attribute visible points to each one of them.
            // FIXME: refactor this with the two others.
            let mut ignored = 0usize;
            for point in 0..points.len() {
                if point == p1 || point == p2 || point == p3 {
                    continue;
                }

                let mut furthest = Bounded::max_value();
                let mut furthest_dist = na::zero();

                for (i, curr_facet) in facets.iter().enumerate() {
                    if curr_facet.can_be_seen_by(point, points) {
                        let distance = curr_facet.distance_to_point(point, points);

                        if distance > furthest_dist {
                            furthest = i;
                            furthest_dist = distance;
                        }
                    }
                }

                if furthest != Bounded::max_value() {
                    facets[furthest].add_visible_point(point, points);
                } else {
                    undecidable.push(point);
                    ignored = ignored + 1;
                }

                // If none of the facet can be seen from the point, it is naturally deleted.
            }

            verify_facet_links(0, &facets[..]);
            verify_facet_links(1, &facets[..]);

            InitialMesh::Facets(facets, cov_mat)
        }
        _ => unreachable!(),
    }
}

fn compute_silhouette<N: Real>(
    facet: usize,
    indirect_id: usize,
    point: usize,
    out_facets: &mut Vec<usize>,
    out_adj_idx: &mut Vec<usize>,
    points: &[Point3<N>],
    removed_facets: &mut Vec<usize>,
    triangles: &mut [TriangleFacet<N>],
) {
    if triangles[facet].valid {
        if !triangles[facet].can_be_seen_by_or_is_affinely_dependent_with_contour(
            point,
            points,
            indirect_id,
        ) {
            out_facets.push(facet);
            out_adj_idx.push(indirect_id);
        } else {
            triangles[facet].valid = false; // The facet must be removed from the convex hull.
            removed_facets.push(facet);

            compute_silhouette(
                triangles[facet].adj[(indirect_id + 1) % 3],
                triangles[facet].indirect_adj_id[(indirect_id + 1) % 3],
                point,
                out_facets,
                out_adj_idx,
                points,
                removed_facets,
                triangles,
            );
            compute_silhouette(
                triangles[facet].adj[(indirect_id + 2) % 3],
                triangles[facet].indirect_adj_id[(indirect_id + 2) % 3],
                point,
                out_facets,
                out_adj_idx,
                points,
                removed_facets,
                triangles,
            );
        }
    }
}

fn verify_facet_links<N: Real>(ifacet: usize, facets: &[TriangleFacet<N>]) {
    let facet = &facets[ifacet];

    for i in 0usize..3 {
        let adji = &facets[facet.adj[i]];

        assert!(
            adji.adj[facet.indirect_adj_id[i]] == ifacet
                && adji.first_point_from_edge(facet.indirect_adj_id[i])
                    == facet.second_point_from_edge(adji.indirect_adj_id[facet.indirect_adj_id[i]])
                && adji.second_point_from_edge(facet.indirect_adj_id[i])
                    == facet.first_point_from_edge(adji.indirect_adj_id[facet.indirect_adj_id[i]])
        )
    }
}

fn attach_and_push_facets3<N: Real>(
    horizon_loop_facets: &[usize],
    horizon_loop_ids: &[usize],
    point: usize,
    points: &[Point3<N>],
    triangles: &mut Vec<TriangleFacet<N>>,
    removed_facets: &[usize],
    undecidable: &mut Vec<usize>,
) {
    // The horizon is built to be in CCW order.
    let mut new_facets = Vec::with_capacity(horizon_loop_facets.len());

    // Create new facets.
    let mut adj_facet: usize;
    let mut indirect_id: usize;

    for i in 0..horizon_loop_facets.len() {
        adj_facet = horizon_loop_facets[i];
        indirect_id = horizon_loop_ids[i];

        let facet = TriangleFacet::new(
            point,
            triangles[adj_facet].second_point_from_edge(indirect_id),
            triangles[adj_facet].first_point_from_edge(indirect_id),
            points,
        );
        new_facets.push(facet);
    }

    // Link the facets together.
    for i in 0..horizon_loop_facets.len() {
        let prev_facet;

        if i == 0 {
            prev_facet = triangles.len() + horizon_loop_facets.len() - 1;
        } else {
            prev_facet = triangles.len() + i - 1;
        }

        let middle_facet = horizon_loop_facets[i];
        let next_facet = triangles.len() + (i + 1) % horizon_loop_facets.len();
        let middle_id = horizon_loop_ids[i];

        new_facets[i].set_facets_adjascency(prev_facet, middle_facet, next_facet, 2, middle_id, 0);
        triangles[middle_facet].adj[middle_id] = triangles.len() + i; // The future id of curr_facet.
        triangles[middle_facet].indirect_adj_id[middle_id] = 1;
    }

    // Assign to each facets some of the points which can see it.
    // FIXME: refactor this with the others.
    for curr_facet in removed_facets.iter() {
        for visible_point in triangles[*curr_facet].visible_points.iter() {
            if *visible_point == point {
                continue;
            }

            let mut furthest = Bounded::max_value();
            let mut furthest_dist = na::zero();

            for (i, curr_facet) in new_facets.iter_mut().enumerate() {
                if curr_facet.can_be_seen_by(*visible_point, points) {
                    let distance = curr_facet.distance_to_point(*visible_point, points);

                    if distance > furthest_dist {
                        furthest = i;
                        furthest_dist = distance;
                    }
                }
            }

            if furthest != Bounded::max_value() {
                new_facets[furthest].add_visible_point(*visible_point, points);
            }

            // If none of the facet can be seen from the point, it is naturally deleted.
        }
    }

    // Try to assign collinear points to one of the new facets.
    let mut i = 0;

    while i != undecidable.len() {
        let mut furthest = Bounded::max_value();
        let mut furthest_dist = na::zero();
        let undecidable_point = undecidable[i];

        for (j, curr_facet) in new_facets.iter_mut().enumerate() {
            if curr_facet.can_be_seen_by(undecidable_point, points) {
                let distance = curr_facet.distance_to_point(undecidable_point, points);

                if distance > furthest_dist {
                    furthest = j;
                    furthest_dist = distance;
                }
            }
        }

        if furthest != Bounded::max_value() {
            new_facets[furthest].add_visible_point(undecidable_point, points);
            let _ = undecidable.swap_remove(i);
        } else {
            i = i + 1;
        }
    }

    // Push facets.
    // FIXME: can we avoid the tmp vector `new_facets` ?
    for curr_facet in new_facets.into_iter() {
        triangles.push(curr_facet);
    }
}

struct TriangleFacet<N: Real> {
    valid: bool,
    normal: Vector3<N>,
    adj: [usize; 3],
    indirect_adj_id: [usize; 3],
    pts: [usize; 3],
    visible_points: Vec<usize>,
    furthest_point: usize,
    furthest_distance: N,
}

impl<N: Real> TriangleFacet<N> {
    pub fn new(p1: usize, p2: usize, p3: usize, points: &[Point3<N>]) -> TriangleFacet<N> {
        let p1p2 = points[p2] - points[p1];
        let p1p3 = points[p3] - points[p1];

        let mut normal = utils::cross3(&p1p2, &p1p3);
        if normal.normalize_mut().is_zero() {
            panic!("ConvexHull hull failure: a facet must not be affinely dependent.");
        }

        TriangleFacet {
            valid: true,
            normal: normal,
            adj: [0, 0, 0],
            indirect_adj_id: [0, 0, 0],
            pts: [p1, p2, p3],
            visible_points: Vec::new(),
            furthest_point: Bounded::max_value(),
            furthest_distance: na::zero(),
        }
    }

    pub fn add_visible_point(&mut self, pid: usize, points: &[Point3<N>]) {
        let distance = self.distance_to_point(pid, points);

        if distance > self.furthest_distance {
            self.furthest_distance = distance;
            self.furthest_point = pid;
        }

        self.visible_points.push(pid);
    }

    pub fn distance_to_point(&self, point: usize, points: &[Point3<N>]) -> N {
        na::dot(&self.normal, &(points[point] - points[self.pts[0]]))
    }

    pub fn set_facets_adjascency(
        &mut self,
        adj1: usize,
        adj2: usize,
        adj3: usize,
        id_adj1: usize,
        id_adj2: usize,
        id_adj3: usize,
    ) {
        self.indirect_adj_id[0] = id_adj1;
        self.indirect_adj_id[1] = id_adj2;
        self.indirect_adj_id[2] = id_adj3;

        self.adj[0] = adj1;
        self.adj[1] = adj2;
        self.adj[2] = adj3;
    }

    pub fn first_point_from_edge(&self, id: usize) -> usize {
        self.pts[id]
    }

    pub fn second_point_from_edge(&self, id: usize) -> usize {
        self.pts[(id + 1) % 3]
    }

    pub fn can_be_seen_by(&self, point: usize, points: &[Point3<N>]) -> bool {
        let p0 = &points[self.pts[0]];
        let p1 = &points[self.pts[1]];
        let p2 = &points[self.pts[2]];
        let pt = &points[point];

        let _eps = N::default_epsilon();

        na::dot(&(*pt - *p0), &self.normal) > _eps * na::convert(100.0f64)
            && !utils::is_affinely_dependent_triangle3(p0, p1, pt)
            && !utils::is_affinely_dependent_triangle3(p0, p2, pt)
            && !utils::is_affinely_dependent_triangle3(p1, p2, pt)
    }

    pub fn can_be_seen_by_or_is_affinely_dependent_with_contour(
        &self,
        point: usize,
        points: &[Point3<N>],
        edge: usize,
    ) -> bool {
        let p0 = &points[self.first_point_from_edge(edge)];
        let p1 = &points[self.second_point_from_edge(edge)];
        let pt = &points[point];

        let aff_dep = utils::is_affinely_dependent_triangle3(p0, p1, pt)
            || utils::is_affinely_dependent_triangle3(p0, pt, p1)
            || utils::is_affinely_dependent_triangle3(p1, p0, pt)
            || utils::is_affinely_dependent_triangle3(p1, pt, p0)
            || utils::is_affinely_dependent_triangle3(pt, p0, p1)
            || utils::is_affinely_dependent_triangle3(pt, p1, p0);

        na::dot(&(*pt - *p0), &self.normal) >= na::zero() || aff_dep
    }
}

#[cfg(test)]
mod test {
    use na::Point2;
    use procedural;

    #[test]
    fn test_simple_convex_hull2() {
        let points = [
            Point2::new(4.723881f32, 3.597233),
            Point2::new(3.333363, 3.429991),
            Point2::new(3.137215, 2.812263),
        ];

        let chull = super::convex_hull2(points.as_slice());

        assert!(chull.coords.len() == 3);
    }

    #[test]
    fn test_ball_convex_hull() {
        // This trigerred a failure to an affinely dependent facet.
        let sphere = super::sphere(0.4f32, 20, 20, true);
        let points = sphere.coords;
        let chull = super::convex_hull3(points.as_slice());

        // dummy test, we are just checking that the construction did not fail.
        assert!(chull.coords.len() == chull.coords.len());
    }
}