use std::mem;
use std::cmp::Ordering;
use std::collections::{BinaryHeap, HashMap, HashSet};
use std::collections::hash_map::Entry;
use num::{Bounded, Zero};
use alga::general::{Id, Real};
use na::{Point3, Translation3, Vector2, Vector3};
use na;
use utils;
use geometry::shape::SupportMap;
use geometry::bounding_volume::{self, BoundingVolume, AABB};
use geometry::partitioning::{BoundingVolumeInterferencesCollector, BVT};
use geometry::query::algorithms::VoronoiSimplex3;
use geometry::query::{ray_internal, Ray, RayCast, RayIntersection};
use procedural::{IndexBuffer, TriMesh};
pub fn hacd<N: Real>(
mesh: TriMesh<Point3<N>>,
error: N,
min_components: usize,
) -> (Vec<TriMesh<Point3<N>>>, Vec<Vec<usize>>) {
assert!(
mesh.normals.is_some(),
"Vertex normals are required to compute the convex decomposition."
);
let mut mesh = mesh;
let mut edges = BinaryHeap::new();
let (center, diag) = normalize(&mut mesh);
let (rays, raymap) = compute_rays(&mesh);
let mut dual_graph = compute_dual_graph(&mesh, &raymap);
let bvt = compute_ray_bvt(&rays[..]);
for (i, v) in dual_graph.iter().enumerate() {
for n in v.neighbors.as_ref().unwrap().iter() {
if i < *n {
let edge = DualGraphEdge::new(0, i, *n, &dual_graph[..], &mesh.coords[..], error);
edges.push(edge);
}
}
}
let mut curr_time = 0;
while dual_graph.len() - curr_time > min_components {
let to_add = match edges.pop() {
None => break,
Some(mut top) => {
if !top.is_valid(&dual_graph[..]) {
continue; }
if !top.exact {
let _max: N = Bounded::max_value();
let mut top_cost = -_max;
loop {
let remove = match edges.peek() {
None => false,
Some(ref e) => {
if !top.is_valid(&dual_graph[..]) {
true
} else {
top_cost = e.mcost;
false
}
}
};
if remove {
let _ = edges.pop();
} else {
break;
}
}
top.compute_decimation_cost(&dual_graph[..], &rays[..], &bvt, -top_cost, error);
if top.concavity > error {
continue;
}
if top.mcost < top_cost {
edges.push(top);
continue;
}
}
top.compute_decimation_cost(
&dual_graph[..],
&rays[..],
&bvt,
Bounded::max_value(),
error,
);
if top.concavity > error {
continue;
}
curr_time = curr_time + 1;
let v1 = top.v1;
let v2 = top.v2;
DualGraphVertex::hecol(top, &mut dual_graph[..]);
assert!(dual_graph[v1].timestamp != Bounded::max_value());
assert!(dual_graph[v2].timestamp != Bounded::max_value());
dual_graph[v1].timestamp = curr_time;
dual_graph[v2].timestamp = Bounded::max_value();
v1
}
};
for n in dual_graph[to_add].neighbors.as_ref().unwrap().iter() {
let edge = DualGraphEdge::new(
curr_time,
to_add,
*n,
&dual_graph[..],
&mesh.coords[..],
error,
);
edges.push(edge);
}
}
let mut result = Vec::with_capacity(dual_graph.len() - curr_time);
let mut parts = Vec::with_capacity(dual_graph.len() - curr_time);
for vertex in dual_graph.into_iter() {
if vertex.timestamp != Bounded::max_value() {
let mut chull = vertex.chull.unwrap();
denormalize(&mut chull, ¢er, diag);
result.push(chull);
parts.push(vertex.parts.unwrap());
}
}
(result, parts)
}
fn normalize<N: Real>(mesh: &mut TriMesh<Point3<N>>) -> (Point3<N>, N) {
let (mins, maxs) = bounding_volume::point_cloud_aabb(&Id::new(), &mesh.coords[..]);
let diag = na::distance(&mins, &maxs);
let center = na::center(&mins, &maxs);
mesh.translate_by(&Translation3::from_vector(-center.coords));
let _1: N = na::one();
mesh.scale_by_scalar(_1 / diag);
(center, diag)
}
fn denormalize<N: Real>(mesh: &mut TriMesh<Point3<N>>, center: &Point3<N>, diag: N) {
mesh.scale_by_scalar(diag);
mesh.translate_by(&Translation3::from_vector(center.coords));
}
struct DualGraphVertex<N: Real> {
neighbors: Option<HashSet<usize>>, ancestors: Option<Vec<VertexWithConcavity<N>>>, uancestors: Option<HashSet<usize>>,
border: Option<HashSet<Vector2<usize>>>,
chull: Option<TriMesh<Point3<N>>>,
parts: Option<Vec<usize>>,
timestamp: usize,
concavity: N,
area: N,
aabb: AABB<Point3<N>>,
}
impl<N: Real> DualGraphVertex<N> {
pub fn new(
ancestor: usize,
mesh: &TriMesh<Point3<N>>,
raymap: &HashMap<(u32, u32), usize>,
) -> DualGraphVertex<N> {
let (idx, ns) = match mesh.indices {
IndexBuffer::Unified(ref idx) => (idx[ancestor].clone(), idx[ancestor].clone()),
IndexBuffer::Split(ref idx) => {
let t = idx[ancestor];
(
Point3::new(t.x.x, t.y.x, t.z.x),
Point3::new(t.x.y, t.y.y, t.z.y),
)
}
};
let triangle = vec![
mesh.coords[idx.x as usize],
mesh.coords[idx.y as usize],
mesh.coords[idx.z as usize],
];
let area = utils::triangle_area(&triangle[0], &triangle[1], &triangle[2]);
let (vmin, vmax) = bounding_volume::point_cloud_aabb(&Id::new(), &triangle[..]);
let aabb = AABB::new(vmin, vmax);
let chull = TriMesh::new(triangle, None, None, None);
let r1 = raymap.get(&(idx.x, ns.x)).unwrap().clone();
let r2 = raymap.get(&(idx.y, ns.y)).unwrap().clone();
let r3 = raymap.get(&(idx.z, ns.z)).unwrap().clone();
let ancestors = vec![
VertexWithConcavity::new(r1, na::zero()),
VertexWithConcavity::new(r2, na::zero()),
VertexWithConcavity::new(r3, na::zero()),
];
let mut uancestors = HashSet::new();
let _ = uancestors.insert(r1);
let _ = uancestors.insert(r2);
let _ = uancestors.insert(r3);
let mut border = HashSet::new();
let _ = border.insert(edge(idx.x, idx.y));
let _ = border.insert(edge(idx.y, idx.z));
let _ = border.insert(edge(idx.z, idx.x));
DualGraphVertex {
neighbors: Some(HashSet::new()),
ancestors: Some(ancestors),
uancestors: Some(uancestors),
parts: Some(vec![ancestor]),
border: Some(border),
timestamp: 0,
chull: Some(chull),
concavity: na::zero(),
area: area,
aabb: aabb,
}
}
pub fn hecol(mut edge: DualGraphEdge<N>, graph: &mut [DualGraphVertex<N>]) {
assert!(edge.exact);
let valid = edge.v1;
let other = edge.v2;
graph[other].ancestors = None;
let other_neighbors = graph[other].neighbors.take().unwrap();
let other_parts = graph[other].parts.take().unwrap();
for neighbor in other_neighbors.iter() {
if *neighbor != valid {
let ga = &mut graph[*neighbor];
let _ = ga.neighbors.as_mut().unwrap().remove(&other);
let _ = ga.neighbors.as_mut().unwrap().insert(valid);
}
}
let mut new_ancestors = Vec::new();
let mut last_ancestor: usize = Bounded::max_value();
loop {
match edge.ancestors.pop() {
None => break,
Some(ancestor) => {
if last_ancestor != ancestor.id {
last_ancestor = ancestor.id;
new_ancestors.push(ancestor)
}
}
}
}
let mut other_uancestors = graph[other].uancestors.take().unwrap();
let mut valid_uancestors = graph[valid].uancestors.take().unwrap();
if other_uancestors.len() > valid_uancestors.len() {
mem::swap(&mut other_uancestors, &mut valid_uancestors);
}
{
for i in other_uancestors.iter() {
let _ = valid_uancestors.insert(*i);
}
}
let valid_chull = graph[valid].chull.take().unwrap();
let other_chull = graph[other].chull.take().unwrap();
let mut vtx1 = valid_chull.coords;
let vtx2 = other_chull.coords;
vtx1.extend(vtx2.into_iter());
let chull = super::convex_hull3(&vtx1[..]);
let valid_border = graph[valid].border.take().unwrap();
let other_border = graph[other].border.take().unwrap();
let new_border = valid_border
.symmetric_difference(&other_border)
.map(|e| *e)
.collect();
let new_aabb = graph[valid].aabb.merged(&graph[other].aabb);
let other_area = graph[other].area;
let gvalid = &mut graph[valid];
gvalid
.parts
.as_mut()
.unwrap()
.extend(other_parts.into_iter());
gvalid.chull = Some(chull);
gvalid.aabb = new_aabb;
gvalid
.neighbors
.as_mut()
.unwrap()
.extend(other_neighbors.into_iter());
let _ = gvalid.neighbors.as_mut().unwrap().remove(&other);
let _ = gvalid.neighbors.as_mut().unwrap().remove(&valid);
gvalid.ancestors = Some(new_ancestors);
gvalid.area = gvalid.area + other_area;
gvalid.concavity = edge.concavity;
gvalid.uancestors = Some(valid_uancestors);
gvalid.border = Some(new_border);
}
}
struct DualGraphEdge<N> {
v1: usize,
v2: usize,
mcost: N,
exact: bool,
timestamp: usize,
ancestors: BinaryHeap<VertexWithConcavity<N>>,
iv1: usize,
iv2: usize,
shape: N,
concavity: N,
iray_cast: bool,
}
impl<N: Real> DualGraphEdge<N> {
pub fn new(
timestamp: usize,
v1: usize,
v2: usize,
dual_graph: &[DualGraphVertex<N>],
coords: &[Point3<N>],
max_concavity: N,
) -> DualGraphEdge<N> {
let mut v1 = v1;
let mut v2 = v2;
if v1 > v2 {
mem::swap(&mut v1, &mut v2);
}
let border_1 = dual_graph[v1].border.as_ref().unwrap();
let border_2 = dual_graph[v2].border.as_ref().unwrap();
let mut perimeter = na::zero::<N>();
for d in border_1
.symmetric_difference(border_2)
.map(|e| na::distance(&coords[e.x], &coords[e.y]))
{
perimeter = perimeter + d;
}
let area = dual_graph[v1].area + dual_graph[v2].area;
let aabb = dual_graph[v1].aabb.merged(&dual_graph[v2].aabb);
let diagonal = na::distance(aabb.mins(), aabb.maxs());
let shape_cost;
if area.is_zero() || diagonal.is_zero() {
shape_cost = perimeter * perimeter;
} else {
shape_cost = diagonal * perimeter * perimeter / area;
}
let approx_concavity = dual_graph[v1].concavity.max(dual_graph[v2].concavity);
DualGraphEdge {
v1: v1,
v2: v2,
mcost: -(approx_concavity + max_concavity * shape_cost),
exact: false,
timestamp: timestamp,
ancestors: BinaryHeap::with_capacity(0),
iv1: 0,
iv2: 0,
shape: shape_cost,
concavity: approx_concavity,
iray_cast: false,
}
}
pub fn is_valid(&self, dual_graph: &[DualGraphVertex<N>]) -> bool {
self.timestamp >= dual_graph[self.v1].timestamp
&& self.timestamp >= dual_graph[self.v2].timestamp
}
pub fn compute_decimation_cost(
&mut self,
dual_graph: &[DualGraphVertex<N>],
rays: &[Ray<Point3<N>>],
bvt: &BVT<usize, AABB<Point3<N>>>,
max_cost: N,
max_concavity: N,
) {
assert!(self.is_valid(dual_graph));
let v1 = &dual_graph[self.v1];
let v2 = &dual_graph[self.v2];
let chull1 = v1.chull.as_ref().unwrap();
let chull2 = v2.chull.as_ref().unwrap();
let chull = ConvexPair::new(&chull1.coords[..], &chull2.coords[..]);
let _max: N = Bounded::max_value();
let a1 = v1.ancestors.as_ref().unwrap();
let a2 = v2.ancestors.as_ref().unwrap();
let max_concavity = max_concavity.min(max_cost - max_concavity * self.shape);
fn cast_ray<'a, N: Real>(
chull: &ConvexPair<'a, N>,
ray: &Ray<Point3<N>>,
id: usize,
concavity: &mut N,
ancestors: &mut BinaryHeap<VertexWithConcavity<N>>,
) {
let sv = chull.support_point(&Id::new(), &ray.dir);
let distance = na::dot(&sv.coords, &ray.dir);
if !relative_eq!(distance, na::zero()) {
let shift: N = na::convert(0.1f64);
let outside_point = ray.origin + ray.dir * (distance + shift);
match chull.toi_with_ray(&Id::new(), &Ray::new(outside_point, -ray.dir), true) {
None => ancestors.push(VertexWithConcavity::new(id, na::zero())),
Some(toi) => {
let new_concavity = distance + shift - toi;
ancestors.push(VertexWithConcavity::new(id, new_concavity));
if *concavity < new_concavity {
*concavity = new_concavity
}
}
}
} else {
ancestors.push(VertexWithConcavity::new(id, na::zero()));
}
}
while (self.iv1 != a1.len() || self.iv2 != a2.len()) && self.concavity <= max_concavity {
let id;
if self.iv1 != a1.len()
&& (self.iv2 == a2.len() || a1[self.iv1].concavity > a2[self.iv2].concavity)
{
id = a1[self.iv1].id;
self.iv1 = self.iv1 + 1;
} else {
id = a2[self.iv2].id;
self.iv2 = self.iv2 + 1;
}
let ray = &rays[id].clone();
if ray.dir.is_zero() {
continue;
}
cast_ray(&chull, ray, id, &mut self.concavity, &mut self.ancestors);
}
if !self.iray_cast && self.iv1 == a1.len() && self.iv2 == a2.len() {
self.iray_cast = true;
let mut internal_rays = Vec::new();
{
let aabb = v1.aabb.merged(&v2.aabb);
let mut visitor =
BoundingVolumeInterferencesCollector::new(&aabb, &mut internal_rays);
bvt.visit(&mut visitor);
}
let uancestors_v1 = v1.uancestors.as_ref().unwrap();
let uancestors_v2 = v2.uancestors.as_ref().unwrap();
for ray_id in internal_rays.iter() {
let ray = &rays[*ray_id];
if !uancestors_v1.contains(ray_id) && !uancestors_v2.contains(ray_id) {
if ray.dir.is_zero() {
continue;
}
match chull.toi_with_ray(&Id::new(), ray, true) {
None => continue,
Some(inter) => {
if inter.is_zero() {
cast_ray(
&chull,
ray,
*ray_id,
&mut self.concavity,
&mut self.ancestors,
);
}
}
}
}
}
}
self.mcost = -(self.concavity + max_concavity * self.shape);
self.exact = self.iv1 == a1.len() && self.iv2 == a2.len();
}
}
impl<N: PartialEq> PartialEq for DualGraphEdge<N> {
#[inline]
fn eq(&self, other: &DualGraphEdge<N>) -> bool {
self.mcost.eq(&other.mcost)
}
}
impl<N: PartialEq> Eq for DualGraphEdge<N> {}
impl<N: PartialOrd> PartialOrd for DualGraphEdge<N> {
#[inline]
fn partial_cmp(&self, other: &DualGraphEdge<N>) -> Option<Ordering> {
self.mcost.partial_cmp(&other.mcost)
}
}
impl<N: PartialOrd> Ord for DualGraphEdge<N> {
#[inline]
fn cmp(&self, other: &DualGraphEdge<N>) -> Ordering {
if self.mcost < other.mcost {
Ordering::Less
} else if self.mcost > other.mcost {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
struct VertexWithConcavity<N> {
id: usize,
concavity: N,
}
impl<N> VertexWithConcavity<N> {
#[inline]
pub fn new(id: usize, concavity: N) -> VertexWithConcavity<N> {
VertexWithConcavity {
id: id,
concavity: concavity,
}
}
}
impl<N: PartialEq> PartialEq for VertexWithConcavity<N> {
#[inline]
fn eq(&self, other: &VertexWithConcavity<N>) -> bool {
self.concavity == other.concavity && self.id == other.id
}
}
impl<N: PartialEq> Eq for VertexWithConcavity<N> {}
impl<N: PartialOrd> PartialOrd for VertexWithConcavity<N> {
#[inline]
fn partial_cmp(&self, other: &VertexWithConcavity<N>) -> Option<Ordering> {
if self.concavity < other.concavity {
Some(Ordering::Less)
} else if self.concavity > other.concavity {
Some(Ordering::Greater)
} else {
Some(self.id.cmp(&other.id))
}
}
}
impl<N: PartialOrd> Ord for VertexWithConcavity<N> {
#[inline]
fn cmp(&self, other: &VertexWithConcavity<N>) -> Ordering {
if self.concavity < other.concavity {
Ordering::Less
} else if self.concavity > other.concavity {
Ordering::Greater
} else {
self.id.cmp(&other.id)
}
}
}
#[inline]
fn edge(a: u32, b: u32) -> Vector2<usize> {
if a > b {
Vector2::new(b as usize, a as usize)
} else {
Vector2::new(a as usize, b as usize)
}
}
fn compute_ray_bvt<N: Real>(rays: &[Ray<Point3<N>>]) -> BVT<usize, AABB<Point3<N>>> {
let aabbs = rays.iter()
.enumerate()
.map(|(i, r)| (i, AABB::new(r.origin, r.origin)))
.collect();
BVT::new_balanced(aabbs)
}
fn compute_rays<N: Real>(
mesh: &TriMesh<Point3<N>>,
) -> (Vec<Ray<Point3<N>>>, HashMap<(u32, u32), usize>) {
let mut rays = Vec::new();
let mut raymap = HashMap::new();
{
let coords = &mesh.coords[..];
let normals = &mesh.normals.as_ref().unwrap()[..];
let mut add_ray = |coord: u32, normal: u32| {
let key = (coord, normal);
let existing = match raymap.entry(key) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(rays.len()),
};
if *existing == rays.len() {
let coord = coords[coord as usize].clone();
let mut normal = normals[normal as usize].clone();
if normal.normalize_mut().is_zero() {
normal = na::zero();
}
rays.push(Ray::new(coord, normal));
}
};
match mesh.indices {
IndexBuffer::Unified(ref b) => for t in b.iter() {
add_ray(t.x, t.x);
add_ray(t.y, t.y);
add_ray(t.z, t.z);
},
IndexBuffer::Split(ref b) => for t in b.iter() {
add_ray(t.x.x, t.x.y);
add_ray(t.y.x, t.y.y);
add_ray(t.z.x, t.z.y);
},
}
}
(rays, raymap)
}
fn compute_dual_graph<N: Real>(
mesh: &TriMesh<Point3<N>>,
raymap: &HashMap<(u32, u32), usize>,
) -> Vec<DualGraphVertex<N>> {
let mut prim_edges = HashMap::new();
let mut dual_vertices: Vec<DualGraphVertex<N>> = (0..mesh.num_triangles())
.map(|i| DualGraphVertex::new(i, mesh, raymap))
.collect();
{
let mut add_triangle_edges = Box::new(|i: usize, t: &Point3<u32>| {
let es = [edge(t.x, t.y), edge(t.y, t.z), edge(t.z, t.x)];
for e in es.iter() {
let other = match prim_edges.entry(*e) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(i),
};
if *other != i {
let _ = dual_vertices[i].neighbors.as_mut().unwrap().insert(*other);
let _ = dual_vertices[*other].neighbors.as_mut().unwrap().insert(i);
}
}
});
match mesh.indices {
IndexBuffer::Unified(ref b) => for (i, t) in b.iter().enumerate() {
add_triangle_edges(i, t)
},
IndexBuffer::Split(ref b) => for (i, t) in b.iter().enumerate() {
let t_idx = Point3::new(t.x.x, t.y.x, t.z.x);
add_triangle_edges(i, &t_idx)
},
}
}
dual_vertices
}
struct ConvexPair<'a, N: 'a + Real> {
a: &'a [Point3<N>],
b: &'a [Point3<N>],
}
impl<'a, N: Real> ConvexPair<'a, N> {
pub fn new(a: &'a [Point3<N>], b: &'a [Point3<N>]) -> ConvexPair<'a, N> {
ConvexPair { a: a, b: b }
}
}
impl<'a, N: Real> SupportMap<Point3<N>, Id> for ConvexPair<'a, N> {
#[inline]
fn support_point(&self, _: &Id, dir: &Vector3<N>) -> Point3<N> {
let sa = utils::point_cloud_support_point(dir, self.a);
let sb = utils::point_cloud_support_point(dir, self.b);
if na::dot(&sa.coords, dir) > na::dot(&sb.coords, dir) {
sa
} else {
sb
}
}
}
impl<'a, N: Real> RayCast<Point3<N>, Id> for ConvexPair<'a, N> {
#[inline]
fn toi_and_normal_with_ray(
&self,
id: &Id,
ray: &Ray<Point3<N>>,
solid: bool,
) -> Option<RayIntersection<Vector3<N>>> {
ray_internal::implicit_toi_and_normal_with_ray(
id,
self,
&mut VoronoiSimplex3::<Point3<N>>::new(),
ray,
solid,
)
}
}