#include "risc0/core/log.h"
#include "risc0/core/util.h"
#include "risc0/zkvm/prove/step.h"
#include <array>
#include <cstdio>
namespace risc0 {
Fp StepContext::get(const Fp* buf, size_t offset, size_t back) { if (back > curStep) {
return Fp::invalid();
}
LOG(3,
"get offset=" << offset << ", back=" << back << " -> "
<< buf[offset * numSteps + (curStep - back)]);
return buf[offset * numSteps + (curStep - back)];
}
void StepContext::set(Fp* buf, size_t offset, Fp val) { #ifdef CIRCUIT_DEBUG
if (val == Fp::invalid()) {
LOG(0, "Set of invalid value, offset = " << offset);
throw std::runtime_error("Invalid set");
}
if (buf[offset * numSteps + curStep] != Fp::invalid() &&
buf[offset * numSteps + curStep] != val) {
LOG(0,
"Resetting offset " << offset << " from " << buf[offset * numSteps + curStep] << " to "
<< val);
throw std::runtime_error("Overwriting value");
}
#endif
LOG(3, "set offset=" << offset << " <- " << val);
buf[offset * numSteps + curStep] = val;
}
Fp StepContext::getDigits(const Fp* buf, size_t bits, size_t offset, size_t back, size_t size) {
LOG(3,
"getDigits, bits=" << bits << ", offset=" << offset << ", back=" << back
<< ", size=" << size);
uint64_t tot = 0;
uint64_t mul = 1;
for (size_t i = 0; i < size; i++) {
tot += get(buf, offset + i, back).asUInt32() * mul;
mul <<= bits;
}
Fp ret = tot % Fp::P;
LOG(3, " ret=" << ret);
return ret;
}
Fp StepContext::setDigits(Fp* buf, size_t bits, size_t offset, size_t size, Fp val) {
LOG(3,
"setDigits, bits=" << bits << ", offset=" << offset << ", size=" << size << ", val=" << val);
uint32_t cur = val.asUInt32();
uint32_t mask = (1 << bits) - 1;
for (size_t i = 0; i < size; i++) {
set(buf, offset + i, cur & mask);
cur >>= bits;
}
return cur;
}
Fp StepContext::getMux(const Fp* buf, size_t offset, size_t back, size_t size) {
LOG(3, "getMux, offset=" << offset << ", back=" << back << ", size=" << size);
uint64_t tot = 0;
for (uint64_t i = 0; i < size; i++) {
tot += get(buf, offset + i, back).asUInt32() * i;
}
return Fp(tot % Fp::P);
}
void StepContext::setMux(Fp* buf, size_t offset, size_t size, Fp val) {
LOG(3, "setMux, offset=" << offset << ", size=" << size << ", val=" << val);
for (uint32_t i = 0; i < size; i++) {
if (val.asUInt32() == i) {
set(buf, offset + i, 1);
} else {
set(buf, offset + i, 0);
}
}
}
void StepContext::memWrite(Fp cycle, Fp addr, Fp low, Fp high) {
uint32_t data = low.asUInt32() | (high.asUInt32() << 16);
bool doWrite = addr.asUInt32() < (1 << (kMemBits - 1));
MemoryEvent evt = {addr.asUInt32(), cycle.asUInt32(), doWrite, data};
mem.history.emplace(evt);
mem.data[addr.asUInt32()] = data;
io->onWrite(mem, cycle.asUInt32(), addr.asUInt32() * 4, data);
}
std::array<Fp, 2> StepContext::memRead(Fp cycle, Fp addr) {
if (mem.data.find(addr.asUInt32()) == mem.data.end()) {
mem.data[addr.asUInt32()] = io->onRead(mem, addr.asUInt32() * 4);
}
uint32_t data = mem.data[addr.asUInt32()];
MemoryEvent evt = {addr.asUInt32(), cycle.asUInt32(), false, data};
mem.history.emplace(evt);
return {data & 0xffff, data >> 16};
}
std::array<Fp, 5> StepContext::memCheck() {
if (mem.history.empty()) {
throw std::runtime_error("memCheck on empty history");
}
MemoryEvent evt = *mem.history.begin();
mem.history.erase(mem.history.begin());
return {evt.cycle, evt.addr, evt.isWrite, evt.data & 0xffff, evt.data >> 16};
}
std::array<Fp, 4> StepContext::divide(Fp numerLow, Fp numerHigh, Fp denomLow, Fp denomHigh) {
uint32_t numer = numerLow.asUInt32() | (numerHigh.asUInt32() << 16);
uint32_t denom = denomLow.asUInt32() | (denomHigh.asUInt32() << 16);
uint32_t quot;
uint32_t rem;
if (denom == 0) {
quot = 0xffffffff;
rem = numer;
} else {
quot = numer / denom;
rem = numer % denom;
}
return {quot & 0xffff, quot >> 16, rem & 0xffff, rem >> 16};
}
void StepContext::requireDigits(Fp* buf, size_t bits, size_t offset, size_t size) {
for (size_t i = 0; i < size; i++) {
#ifdef CIRCUIT_DEBUG
if (get(buf, offset + i, 0) == Fp::invalid()) {
set(buf, offset + i, Fp(0));
}
#endif
if (get(buf, offset + i, 0).asUInt32() >= (1U << bits)) {
throw std::runtime_error("Invalid requireDigits\n");
}
}
}
void StepContext::requireMux(Fp* buf, size_t offset, size_t size, const char* msg) {
size_t tot = 0;
for (size_t i = 0; i < size; i++) {
#ifdef CIRCUIT_DEBUG
if (get(buf, offset + i, 0) == Fp::invalid()) {
set(buf, offset + i, Fp(0));
}
#endif
uint32_t val = get(buf, offset + i, 0).asUInt32();
tot += val;
if (val >= 2) {
throw std::runtime_error(std::string("Invalid requireMux: " + std::string(msg)));
}
}
if (tot != 1) {
throw std::runtime_error(std::string("Invalid requireMux: ") + std::string(msg));
}
}
void StepContext::requireZero(Fp val, const char* msg) {
if (val != 0) {
throw std::runtime_error(std::string("Invalid requireZero: ") + std::string(msg));
}
}
static constexpr uint32_t kInit[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
static constexpr uint32_t kRound[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
void setupCode(Fp* code,
size_t numSteps,
uint32_t startAddr,
const std::map<uint32_t, uint32_t>& image) {
size_t kCyclePos = 0;
size_t kTypePos = kCyclePos + 1;
size_t kShaPos = kTypePos + CodeCycleType::NUM_TYPES;
size_t kP1Pos = kShaPos + ShaCycleType::NUM_TYPES;
size_t kP2Pos = kP1Pos + 1;
size_t kDataPos = kP2Pos + 1;
size_t kData2Pos = kDataPos + 2;
if (image.size() + 3 + kZkCycles > numSteps) {
throw std::runtime_error("Unable to generate code");
}
for (uint32_t i = 0; i < numSteps; i++) {
code[i] = i;
}
code[(kTypePos + CodeCycleType::INIT) * numSteps] = 1;
uint32_t cycle = 1;
for (const auto& kvp : image) {
code[(kTypePos + CodeCycleType::MEM_WRITE) * numSteps + cycle] = 1;
code[kP1Pos * numSteps + cycle] = kvp.first / 4;
code[kP2Pos * numSteps + cycle] = (kvp.first / 4) >= (1 << (kMemBits - 1));
code[(kDataPos + 0) * numSteps + cycle] = kvp.second & 0xffff;
code[(kDataPos + 1) * numSteps + cycle] = kvp.second >> 16;
cycle++;
}
code[(kTypePos + CodeCycleType::RESET) * numSteps + cycle] = 1;
code[kP1Pos * numSteps + cycle] = startAddr;
cycle++;
uint32_t base_cycle = cycle;
for (; cycle + 1 + kZkCycles < numSteps; cycle++) {
size_t inst_phase = (cycle - base_cycle) % 3;
size_t sha_phase = (cycle - base_cycle) % 72;
if (inst_phase == 2) {
code[(kTypePos + CodeCycleType::FINAL) * numSteps + cycle] = 1;
} else {
code[(kTypePos + CodeCycleType::NORMAL) * numSteps + cycle] = 1;
}
if (sha_phase < 4) {
code[(kShaPos + ShaCycleType::CONTROL) * numSteps + cycle] = 1;
code[kP1Pos * numSteps + cycle] = sha_phase;
code[kP2Pos * numSteps + cycle] = (sha_phase == 0);
code[(kDataPos + 0) * numSteps + cycle] = kInit[3 - sha_phase] & 0xffff;
code[(kDataPos + 1) * numSteps + cycle] = kInit[3 - sha_phase] >> 16;
code[(kData2Pos + 0) * numSteps + cycle] = kInit[7 - sha_phase] & 0xffff;
code[(kData2Pos + 1) * numSteps + cycle] = kInit[7 - sha_phase] >> 16;
} else if (sha_phase < 20) {
code[(kShaPos + ShaCycleType::LOAD) * numSteps + cycle] = 1;
code[(kDataPos + 0) * numSteps + cycle] = kRound[sha_phase - 4] & 0xffff;
code[(kDataPos + 1) * numSteps + cycle] = kRound[sha_phase - 4] >> 16;
} else if (sha_phase < 68) {
code[(kShaPos + ShaCycleType::MIX) * numSteps + cycle] = 1;
code[kP1Pos * numSteps + cycle] = (sha_phase >= 64);
code[kP2Pos * numSteps + cycle] = (sha_phase == 67);
code[(kDataPos + 0) * numSteps + cycle] = kRound[sha_phase - 4] & 0xffff;
code[(kDataPos + 1) * numSteps + cycle] = kRound[sha_phase - 4] >> 16;
} else {
code[kP1Pos * numSteps + cycle] = sha_phase - 68 + 4;
code[(kShaPos + ShaCycleType::CONTROL) * numSteps + cycle] = 1;
}
}
code[(kTypePos + CodeCycleType::FINI) * numSteps + cycle] = 1;
}
}