wit_component/
encoding.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
//! Support for encoding a core wasm module into a component.
//!
//! This module, at a high level, is tasked with transforming a core wasm
//! module into a component. This will process the imports/exports of the core
//! wasm module and translate between the `wit-parser` AST and the component
//! model binary format, producing a final component which will import
//! `*.wit` defined interfaces and export `*.wit` defined interfaces as well
//! with everything wired up internally according to the canonical ABI and such.
//!
//! This doc block here is not currently 100% complete and doesn't cover the
//! full functionality of this module.
//!
//! # Adapter Modules
//!
//! One feature of this encoding process which is non-obvious is the support for
//! "adapter modules". The general idea here is that historical host API
//! definitions have been around for quite some time, such as
//! `wasi_snapshot_preview1`, but these host API definitions are not compatible
//! with the canonical ABI or component model exactly. These APIs, however, can
//! in most situations be roughly adapted to component-model equivalents. This
//! is where adapter modules come into play, they're converting from some
//! arbitrary API/ABI into a component-model using API.
//!
//! An adapter module is a separately compiled `*.wasm` blob which will export
//! functions matching the desired ABI (e.g. exporting functions matching the
//! `wasi_snapshot_preview1` ABI). The `*.wasm` blob will then import functions
//! in the canonical ABI and internally adapt the exported functions to the
//! imported functions. The encoding support in this module is what wires
//! everything up and makes sure that everything is imported and exported to the
//! right place. Adapter modules currently always use "indirect lowerings"
//! meaning that a shim module is created and provided as the imports to the
//! main core wasm module, and the shim module is "filled in" at a later time
//! during the instantiation process.
//!
//! Adapter modules are not intended to be general purpose and are currently
//! very restrictive, namely:
//!
//! * They must import a linear memory and not define their own linear memory
//!   otherwise. In other words they import memory and cannot use multi-memory.
//! * They cannot define any `elem` or `data` segments since otherwise there's
//!   no knowledge ahead-of-time of where their data or element segments could
//!   go. This means things like no panics, no indirect calls, etc.
//! * If the adapter uses a shadow stack, the global that points to it must be a
//!   mutable `i32` named `__stack_pointer`. This stack is automatically
//!   allocated with an injected `allocate_stack` function that will either use
//!   the main module's `cabi_realloc` export (if present) or `memory.grow`. It
//!   allocates only 64KB of stack space, and there is no protection if that
//!   overflows.
//! * If the adapter has a global, mutable `i32` named `allocation_state`, it
//!   will be used to keep track of stack allocation status and avoid infinite
//!   recursion if the main module's `cabi_realloc` function calls back into the
//!   adapter.  `allocate_stack` will check this global on entry; if it is zero,
//!   it will set it to one, then allocate the stack, and finally set it to two.
//!   If it is non-zero, `allocate_stack` will do nothing and return immediately
//!   (because either the stack has already been allocated or is in the process
//!   of being allocated).  If the adapter does not have an `allocation_state`,
//!   `allocate_stack` will use `memory.grow` to allocate the stack; it will
//!   _not_ use the main module's `cabi_realloc` even if it's available.
//! * If the adapter imports a `cabi_realloc` function, and the main module
//!   exports one, they'll be linked together via an alias. If the adapter
//!   imports such a function but the main module does _not_ export one, we'll
//!   synthesize one based on `memory.grow` (which will trap for any size other
//!   than 64KB). Note that the main module's `cabi_realloc` function may call
//!   back into the adapter before the shadow stack has been allocated. In this
//!   case (when `allocation_state` is zero or one), the adapter should return
//!   whatever dummy value(s) it can immediately without touching the stack.
//!
//! This means that adapter modules are not meant to be written by everyone.
//! It's assumed that these will be relatively few and far between yet still a
//! crucial part of the transition process from to the component model since
//! otherwise there's no way to run a `wasi_snapshot_preview1` module within the
//! component model.

use crate::metadata::{self, Bindgen, ModuleMetadata};
use crate::validation::{Export, ExportMap, Import, ImportInstance, ImportMap};
use crate::StringEncoding;
use anyhow::{anyhow, bail, Context, Result};
use indexmap::{IndexMap, IndexSet};
use std::borrow::Cow;
use std::collections::HashMap;
use std::hash::Hash;
use std::mem;
use wasm_encoder::*;
use wasmparser::Validator;
use wit_parser::{
    abi::{AbiVariant, WasmSignature, WasmType},
    Function, FunctionKind, InterfaceId, LiveTypes, Resolve, Type, TypeDefKind, TypeId, TypeOwner,
    WorldItem, WorldKey,
};

const INDIRECT_TABLE_NAME: &str = "$imports";

mod wit;
pub use wit::{encode, encode_world};

mod types;
use types::{InstanceTypeEncoder, RootTypeEncoder, ValtypeEncoder};
mod world;
use world::{ComponentWorld, ImportedInterface, Lowering};

fn to_val_type(ty: &WasmType) -> ValType {
    match ty {
        WasmType::I32 => ValType::I32,
        WasmType::I64 => ValType::I64,
        WasmType::F32 => ValType::F32,
        WasmType::F64 => ValType::F64,
        WasmType::Pointer => ValType::I32,
        WasmType::PointerOrI64 => ValType::I64,
        WasmType::Length => ValType::I32,
    }
}

bitflags::bitflags! {
    /// Options in the `canon lower` or `canon lift` required for a particular
    /// function.
    #[derive(Copy, Clone, Debug)]
    pub struct RequiredOptions: u8 {
        /// A memory must be specified, typically the "main module"'s memory
        /// export.
        const MEMORY = 1 << 0;
        /// A `realloc` function must be specified, typically named
        /// `cabi_realloc`.
        const REALLOC = 1 << 1;
        /// A string encoding must be specified, which is always utf-8 for now
        /// today.
        const STRING_ENCODING = 1 << 2;
    }
}

impl RequiredOptions {
    fn for_import(resolve: &Resolve, func: &Function) -> RequiredOptions {
        let sig = resolve.wasm_signature(AbiVariant::GuestImport, func);
        let mut ret = RequiredOptions::empty();
        // Lift the params and lower the results for imports
        ret.add_lift(TypeContents::for_types(
            resolve,
            func.params.iter().map(|(_, t)| t),
        ));
        ret.add_lower(TypeContents::for_types(resolve, func.results.iter_types()));

        // If anything is indirect then `memory` will be required to read the
        // indirect values.
        if sig.retptr || sig.indirect_params {
            ret |= RequiredOptions::MEMORY;
        }
        ret
    }

    fn for_export(resolve: &Resolve, func: &Function) -> RequiredOptions {
        let sig = resolve.wasm_signature(AbiVariant::GuestExport, func);
        let mut ret = RequiredOptions::empty();
        // Lower the params and lift the results for exports
        ret.add_lower(TypeContents::for_types(
            resolve,
            func.params.iter().map(|(_, t)| t),
        ));
        ret.add_lift(TypeContents::for_types(resolve, func.results.iter_types()));

        // If anything is indirect then `memory` will be required to read the
        // indirect values, but if the arguments are indirect then `realloc` is
        // additionally required to allocate space for the parameters.
        if sig.retptr || sig.indirect_params {
            ret |= RequiredOptions::MEMORY;
            if sig.indirect_params {
                ret |= RequiredOptions::REALLOC;
            }
        }
        ret
    }

    fn add_lower(&mut self, types: TypeContents) {
        // If lists/strings are lowered into wasm then memory is required as
        // usual but `realloc` is also required to allow the external caller to
        // allocate space in the destination for the list/string.
        if types.contains(TypeContents::LIST) {
            *self |= RequiredOptions::MEMORY | RequiredOptions::REALLOC;
        }
        if types.contains(TypeContents::STRING) {
            *self |= RequiredOptions::MEMORY
                | RequiredOptions::STRING_ENCODING
                | RequiredOptions::REALLOC;
        }
    }

    fn add_lift(&mut self, types: TypeContents) {
        // Unlike for `lower` when lifting a string/list all that's needed is
        // memory, since the string/list already resides in memory `realloc`
        // isn't needed.
        if types.contains(TypeContents::LIST) {
            *self |= RequiredOptions::MEMORY;
        }
        if types.contains(TypeContents::STRING) {
            *self |= RequiredOptions::MEMORY | RequiredOptions::STRING_ENCODING;
        }
    }

    fn into_iter(
        self,
        encoding: StringEncoding,
        memory_index: Option<u32>,
        realloc_index: Option<u32>,
    ) -> Result<impl ExactSizeIterator<Item = CanonicalOption>> {
        #[derive(Default)]
        struct Iter {
            options: [Option<CanonicalOption>; 3],
            current: usize,
            count: usize,
        }

        impl Iter {
            fn push(&mut self, option: CanonicalOption) {
                assert!(self.count < self.options.len());
                self.options[self.count] = Some(option);
                self.count += 1;
            }
        }

        impl Iterator for Iter {
            type Item = CanonicalOption;

            fn next(&mut self) -> Option<Self::Item> {
                if self.current == self.count {
                    return None;
                }
                let option = self.options[self.current];
                self.current += 1;
                option
            }

            fn size_hint(&self) -> (usize, Option<usize>) {
                (self.count - self.current, Some(self.count - self.current))
            }
        }

        impl ExactSizeIterator for Iter {}

        let mut iter = Iter::default();

        if self.contains(RequiredOptions::MEMORY) {
            iter.push(CanonicalOption::Memory(memory_index.ok_or_else(|| {
                anyhow!("module does not export a memory named `memory`")
            })?));
        }

        if self.contains(RequiredOptions::REALLOC) {
            iter.push(CanonicalOption::Realloc(realloc_index.ok_or_else(
                || anyhow!("module does not export a function named `cabi_realloc`"),
            )?));
        }

        if self.contains(RequiredOptions::STRING_ENCODING) {
            iter.push(encoding.into());
        }

        Ok(iter)
    }
}

bitflags::bitflags! {
    /// Flags about what kinds of types are present within the recursive
    /// structure of a type.
    struct TypeContents: u8 {
        const STRING = 1 << 0;
        const LIST = 1 << 1;
    }
}

impl TypeContents {
    fn for_types<'a>(resolve: &Resolve, types: impl Iterator<Item = &'a Type>) -> Self {
        let mut cur = TypeContents::empty();
        for ty in types {
            cur |= Self::for_type(resolve, ty);
        }
        cur
    }

    fn for_optional_types<'a>(
        resolve: &Resolve,
        types: impl Iterator<Item = Option<&'a Type>>,
    ) -> Self {
        Self::for_types(resolve, types.flatten())
    }

    fn for_optional_type(resolve: &Resolve, ty: Option<&Type>) -> Self {
        match ty {
            Some(ty) => Self::for_type(resolve, ty),
            None => Self::empty(),
        }
    }

    fn for_type(resolve: &Resolve, ty: &Type) -> Self {
        match ty {
            Type::Id(id) => match &resolve.types[*id].kind {
                TypeDefKind::Handle(h) => match h {
                    wit_parser::Handle::Own(_) => Self::empty(),
                    wit_parser::Handle::Borrow(_) => Self::empty(),
                },
                TypeDefKind::Resource => Self::empty(),
                TypeDefKind::Record(r) => Self::for_types(resolve, r.fields.iter().map(|f| &f.ty)),
                TypeDefKind::Tuple(t) => Self::for_types(resolve, t.types.iter()),
                TypeDefKind::Flags(_) => Self::empty(),
                TypeDefKind::Option(t) => Self::for_type(resolve, t),
                TypeDefKind::Result(r) => {
                    Self::for_optional_type(resolve, r.ok.as_ref())
                        | Self::for_optional_type(resolve, r.err.as_ref())
                }
                TypeDefKind::Variant(v) => {
                    Self::for_optional_types(resolve, v.cases.iter().map(|c| c.ty.as_ref()))
                }
                TypeDefKind::Enum(_) => Self::empty(),
                TypeDefKind::List(t) => Self::for_type(resolve, t) | Self::LIST,
                TypeDefKind::Type(t) => Self::for_type(resolve, t),
                TypeDefKind::Future(_) => todo!("encoding for future"),
                TypeDefKind::Stream(_) => todo!("encoding for stream"),
                TypeDefKind::Unknown => unreachable!(),
            },
            Type::String => Self::STRING,
            _ => Self::empty(),
        }
    }
}

/// State relating to encoding a component.
pub struct EncodingState<'a> {
    /// The component being encoded.
    component: ComponentBuilder,
    /// The index into the core module index space for the inner core module.
    ///
    /// If `None`, the core module has not been encoded.
    module_index: Option<u32>,
    /// The index into the core instance index space for the inner core module.
    ///
    /// If `None`, the core module has not been instantiated.
    instance_index: Option<u32>,
    /// The index in the core memory index space for the exported memory.
    ///
    /// If `None`, then the memory has not yet been aliased.
    memory_index: Option<u32>,
    /// The index of the shim instance used for lowering imports into the core instance.
    ///
    /// If `None`, then the shim instance how not yet been encoded.
    shim_instance_index: Option<u32>,
    /// The index of the fixups module to instantiate to fill in the lowered imports.
    ///
    /// If `None`, then a fixup module has not yet been encoded.
    fixups_module_index: Option<u32>,

    /// A map of named adapter modules and the index that the module was defined
    /// at.
    adapter_modules: IndexMap<&'a str, u32>,
    /// A map of adapter module instances and the index of their instance.
    adapter_instances: IndexMap<&'a str, u32>,

    /// Imported instances and what index they were imported as.
    imported_instances: IndexMap<InterfaceId, u32>,
    imported_funcs: IndexMap<String, u32>,
    exported_instances: IndexMap<InterfaceId, u32>,

    /// Maps used when translating types to the component model binary format.
    /// Note that imports and exports are stored in separate maps since they
    /// need fresh hierarchies of types in case the same interface is both
    /// imported and exported.
    import_type_map: HashMap<TypeId, u32>,
    import_func_type_map: HashMap<types::FunctionKey<'a>, u32>,
    export_type_map: HashMap<TypeId, u32>,
    export_func_type_map: HashMap<types::FunctionKey<'a>, u32>,

    /// Cache of items that have been aliased from core instances.
    ///
    /// This is a helper to reduce the number of aliases created by ensuring
    /// that repeated requests for the same item return the same index of an
    /// original `core alias` item.
    aliased_core_items: HashMap<(u32, String), u32>,

    /// Metadata about the world inferred from the input to `ComponentEncoder`.
    info: &'a ComponentWorld<'a>,
}

impl<'a> EncodingState<'a> {
    fn encode_core_modules(&mut self) {
        assert!(self.module_index.is_none());
        let idx = self.component.core_module_raw(&self.info.encoder.module);
        self.module_index = Some(idx);

        for (name, adapter) in self.info.adapters.iter() {
            let add_meta = wasm_metadata::AddMetadata {
                name: Some(if adapter.library_info.is_some() {
                    name.to_string()
                } else {
                    format!("wit-component:adapter:{name}")
                }),
                ..Default::default()
            };
            let wasm = add_meta
                .to_wasm(&adapter.wasm)
                .expect("core wasm can get name added");
            let idx = self.component.core_module_raw(&wasm);
            let prev = self.adapter_modules.insert(name, idx);
            assert!(prev.is_none());
        }
    }

    fn root_import_type_encoder(
        &mut self,
        interface: Option<InterfaceId>,
    ) -> RootTypeEncoder<'_, 'a> {
        RootTypeEncoder {
            state: self,
            interface,
            import_types: true,
        }
    }

    fn root_export_type_encoder(
        &mut self,
        interface: Option<InterfaceId>,
    ) -> RootTypeEncoder<'_, 'a> {
        RootTypeEncoder {
            state: self,
            interface,
            import_types: false,
        }
    }

    fn instance_type_encoder(&mut self, interface: InterfaceId) -> InstanceTypeEncoder<'_, 'a> {
        InstanceTypeEncoder {
            state: self,
            interface,
            type_map: Default::default(),
            func_type_map: Default::default(),
            ty: Default::default(),
        }
    }

    fn encode_imports(&mut self, name_map: &HashMap<String, String>) -> Result<()> {
        let mut has_funcs = false;
        for (name, info) in self.info.import_map.iter() {
            match name {
                Some(name) => {
                    self.encode_interface_import(name_map.get(name).unwrap_or(name), info)?
                }
                None => has_funcs = true,
            }
        }

        let resolve = &self.info.encoder.metadata.resolve;
        let world = &resolve.worlds[self.info.encoder.metadata.world];
        for (_name, item) in world.imports.iter() {
            if let WorldItem::Type(ty) = item {
                self.root_import_type_encoder(None)
                    .encode_valtype(resolve, &Type::Id(*ty))?;
            }
        }

        if has_funcs {
            let info = &self.info.import_map[&None];
            self.encode_root_import_funcs(info)?;
        }
        Ok(())
    }

    fn encode_interface_import(&mut self, name: &str, info: &ImportedInterface) -> Result<()> {
        let resolve = &self.info.encoder.metadata.resolve;
        let interface_id = info.interface.as_ref().unwrap();
        let interface_id = *interface_id;
        let interface = &resolve.interfaces[interface_id];
        log::trace!("encoding imports for `{name}` as {:?}", interface_id);
        let mut encoder = self.instance_type_encoder(interface_id);

        // First encode all type information
        if let Some(live) = encoder.state.info.live_type_imports.get(&interface_id) {
            for ty in live {
                log::trace!(
                    "encoding extra type {ty:?} name={:?}",
                    resolve.types[*ty].name
                );
                encoder.encode_valtype(resolve, &Type::Id(*ty))?;
            }
        }

        // Next encode all required functions from this imported interface
        // into the instance type.
        for (_, func) in interface.functions.iter() {
            if !info.lowerings.contains_key(&func.name) {
                continue;
            }
            log::trace!("encoding function type for `{}`", func.name);
            let idx = encoder.encode_func_type(resolve, func)?;

            encoder.ty.export(&func.name, ComponentTypeRef::Func(idx));
        }

        let ty = encoder.ty;
        // Don't encode empty instance types since they're not
        // meaningful to the runtime of the component anyway.
        if ty.is_empty() {
            return Ok(());
        }
        let instance_type_idx = self.component.type_instance(&ty);
        let instance_idx = self
            .component
            .import(name, ComponentTypeRef::Instance(instance_type_idx));
        let prev = self.imported_instances.insert(interface_id, instance_idx);
        assert!(prev.is_none());
        Ok(())
    }

    fn encode_root_import_funcs(&mut self, info: &ImportedInterface) -> Result<()> {
        let resolve = &self.info.encoder.metadata.resolve;
        let world = self.info.encoder.metadata.world;
        for (name, item) in resolve.worlds[world].imports.iter() {
            let func = match item {
                WorldItem::Function(f) => f,
                WorldItem::Interface { .. } | WorldItem::Type(_) => continue,
            };
            let name = resolve.name_world_key(name);
            if !info.lowerings.contains_key(&name) {
                continue;
            }
            log::trace!("encoding function type for `{}`", func.name);
            let idx = self
                .root_import_type_encoder(None)
                .encode_func_type(resolve, func)?;
            let func_idx = self.component.import(&name, ComponentTypeRef::Func(idx));
            let prev = self.imported_funcs.insert(name, func_idx);
            assert!(prev.is_none());
        }
        Ok(())
    }

    fn alias_imported_type(&mut self, interface: InterfaceId, id: TypeId) -> u32 {
        let ty = &self.info.encoder.metadata.resolve.types[id];
        let name = ty.name.as_ref().expect("type must have a name");
        let instance = self.imported_instances[&interface];
        self.component
            .alias_export(instance, name, ComponentExportKind::Type)
    }

    fn alias_exported_type(&mut self, interface: InterfaceId, id: TypeId) -> u32 {
        let ty = &self.info.encoder.metadata.resolve.types[id];
        let name = ty.name.as_ref().expect("type must have a name");
        let instance = self.exported_instances[&interface];
        self.component
            .alias_export(instance, name, ComponentExportKind::Type)
    }

    fn encode_core_instantiation(&mut self) -> Result<()> {
        // Encode a shim instantiation if needed
        let shims = self.encode_shim_instantiation()?;

        // Next declare all exported resource types. This populates
        // `export_type_map` and will additionally be used for imports to
        // modules instantiated below.
        self.declare_exported_resources(&shims);

        // Next instantiate the main module. This provides the linear memory to
        // use for all future adapters and enables creating indirect lowerings
        // at the end.
        self.instantiate_main_module(&shims)?;

        // Separate the adapters according which should be instantiated before
        // and after indirect lowerings are encoded.
        let (before, after) = self
            .info
            .adapters
            .iter()
            .partition::<Vec<_>, _>(|(_, adapter)| {
                !matches!(
                    adapter.library_info,
                    Some(LibraryInfo {
                        instantiate_after_shims: true,
                        ..
                    })
                )
            });

        for (name, _adapter) in before {
            self.instantiate_adapter_module(&shims, name)?;
        }

        // With all the relevant core wasm instances in play now the original shim
        // module, if present, can be filled in with lowerings/adapters/etc.
        self.encode_indirect_lowerings(&shims)?;

        for (name, _adapter) in after {
            self.instantiate_adapter_module(&shims, name)?;
        }

        self.encode_initialize_with_start()?;

        Ok(())
    }

    fn lookup_resource_index(&mut self, id: TypeId) -> u32 {
        let resolve = &self.info.encoder.metadata.resolve;
        let ty = &resolve.types[id];
        match ty.owner {
            // If this resource is owned by a world then it's a top-level
            // resource which means it must have already been translated so
            // it's available for lookup in `import_type_map`.
            TypeOwner::World(_) => self.import_type_map[&id],
            TypeOwner::Interface(i) => {
                let instance = self.imported_instances[&i];
                let name = ty.name.as_ref().expect("resources must be named");
                self.component
                    .alias_export(instance, name, ComponentExportKind::Type)
            }
            TypeOwner::None => panic!("resources must have an owner"),
        }
    }

    fn encode_exports(&mut self, module: CustomModule) -> Result<()> {
        let resolve = &self.info.encoder.metadata.resolve;
        let exports = match module {
            CustomModule::Main => &self.info.encoder.main_module_exports,
            CustomModule::Adapter(name) => &self.info.encoder.adapters[name].required_exports,
        };
        if exports.is_empty() {
            return Ok(());
        }

        let mut interface_func_core_names = IndexMap::new();
        let mut world_func_core_names = IndexMap::new();
        for (core_name, export) in self.info.exports_for(module).iter() {
            match export {
                Export::WorldFunc(name) => {
                    let prev = world_func_core_names.insert(name, core_name);
                    assert!(prev.is_none());
                }
                Export::InterfaceFunc(id, name) => {
                    let prev = interface_func_core_names
                        .entry(id)
                        .or_insert(IndexMap::new())
                        .insert(name.as_str(), core_name);
                    assert!(prev.is_none());
                }
                Export::WorldFuncPostReturn(..)
                | Export::InterfaceFuncPostReturn(..)
                | Export::ResourceDtor(..)
                | Export::Memory
                | Export::GeneralPurposeRealloc
                | Export::GeneralPurposeExportRealloc
                | Export::GeneralPurposeImportRealloc
                | Export::Initialize
                | Export::ReallocForAdapter => continue,
            }
        }

        let world = &resolve.worlds[self.info.encoder.metadata.world];

        for export_name in exports {
            let export_string = resolve.name_world_key(export_name);
            match &world.exports[export_name] {
                WorldItem::Function(func) => {
                    let ty = self
                        .root_import_type_encoder(None)
                        .encode_func_type(resolve, func)?;
                    let core_name = world_func_core_names[&func.name];
                    let idx = self.encode_lift(module, &core_name, export_name, func, ty)?;
                    self.component
                        .export(&export_string, ComponentExportKind::Func, idx, None);
                }
                WorldItem::Interface { id, .. } => {
                    let core_names = interface_func_core_names.get(id);
                    self.encode_interface_export(
                        &export_string,
                        module,
                        export_name,
                        *id,
                        core_names,
                    )?;
                }
                WorldItem::Type(_) => unreachable!(),
            }
        }

        Ok(())
    }

    fn encode_interface_export(
        &mut self,
        export_name: &str,
        module: CustomModule<'_>,
        key: &WorldKey,
        export: InterfaceId,
        interface_func_core_names: Option<&IndexMap<&str, &str>>,
    ) -> Result<()> {
        log::trace!("encode interface export `{export_name}`");
        let resolve = &self.info.encoder.metadata.resolve;

        // First execute a `canon lift` for all the functions in this interface
        // from the core wasm export. This requires type information but notably
        // not exported type information since we don't want to export this
        // interface's types from the root of the component. Each lifted
        // function is saved off into an `imports` array to get imported into
        // the nested component synthesized below.
        let mut imports = Vec::new();
        let mut root = self.root_export_type_encoder(Some(export));
        for (_, func) in &resolve.interfaces[export].functions {
            let core_name = interface_func_core_names.unwrap()[func.name.as_str()];
            let ty = root.encode_func_type(resolve, func)?;
            let func_index = root.state.encode_lift(module, &core_name, key, func, ty)?;
            imports.push((
                import_func_name(func),
                ComponentExportKind::Func,
                func_index,
            ));
        }

        // Next a nested component is created which will import the functions
        // above and then reexport them. The purpose of them is to "re-type" the
        // functions through type ascription on each `func` item.
        let mut nested = NestedComponentTypeEncoder {
            component: ComponentBuilder::default(),
            type_map: Default::default(),
            func_type_map: Default::default(),
            export_types: false,
            interface: export,
            state: self,
            imports: IndexMap::new(),
        };

        // Import all transitively-referenced types from other interfaces into
        // this component. This temporarily switches the `interface` listed to
        // the interface of the referred-to-type to generate the import. After
        // this loop `interface` is rewritten to `export`.
        //
        // Each component is a standalone "island" so the necessary type
        // information needs to be rebuilt within this component. This ensures
        // that we're able to build a valid component and additionally connect
        // all the type information to the outer context.
        let mut types_to_import = LiveTypes::default();
        types_to_import.add_interface(resolve, export);
        let exports_used = &nested.state.info.exports_used[&export];
        for ty in types_to_import.iter() {
            if let TypeOwner::Interface(owner) = resolve.types[ty].owner {
                if owner == export {
                    // Here this deals with the current exported interface which
                    // is handled below.
                    continue;
                }

                // Ensure that `self` has encoded this type before. If so this
                // is a noop but otherwise it generates the type here.
                let mut encoder = if exports_used.contains(&owner) {
                    nested.state.root_export_type_encoder(Some(export))
                } else {
                    nested.state.root_import_type_encoder(Some(export))
                };
                encoder.encode_valtype(resolve, &Type::Id(ty))?;

                // Next generate the same type but this time within the
                // component itself. The type generated above (or prior) will be
                // used to satisfy this type import.
                nested.interface = owner;
                nested.encode_valtype(resolve, &Type::Id(ty))?;
            }
        }
        nested.interface = export;

        // Record the map of types imported to their index at where they were
        // imported. This is used after imports are encoded as exported types
        // will refer to these.
        let imported_types = nested.type_map.clone();

        // Handle resource types for this instance specially, namely importing
        // them into the nested component. This models how the resource is
        // imported from its definition in the outer component to get reexported
        // internally. This chiefly avoids creating a second resource which is
        // not desired in this situation.
        let mut resources = HashMap::new();
        for (_name, ty) in resolve.interfaces[export].types.iter() {
            if !matches!(resolve.types[*ty].kind, TypeDefKind::Resource) {
                continue;
            }
            let idx = match nested.encode_valtype(resolve, &Type::Id(*ty))? {
                ComponentValType::Type(idx) => idx,
                _ => unreachable!(),
            };
            resources.insert(*ty, idx);
        }

        // Next import each function of this interface. This will end up
        // defining local types as necessary or using the types as imported
        // above.
        for (_, func) in resolve.interfaces[export].functions.iter() {
            let ty = nested.encode_func_type(resolve, func)?;
            nested
                .component
                .import(&import_func_name(func), ComponentTypeRef::Func(ty));
        }

        // Swap the `nested.type_map` which was previously from `TypeId` to
        // `u32` to instead being from `u32` to `TypeId`. This reverse map is
        // then used in conjunction with `self.type_map` to satisfy all type
        // imports of the nested component generated. The type import's index in
        // the inner component is translated to a `TypeId` via `reverse_map`
        // which is then translated back to our own index space via `type_map`.
        let reverse_map = nested
            .type_map
            .drain()
            .map(|p| (p.1, p.0))
            .collect::<HashMap<_, _>>();
        for (name, idx) in nested.imports.drain(..) {
            let id = reverse_map[&idx];
            let owner = match resolve.types[id].owner {
                TypeOwner::Interface(id) => id,
                _ => unreachable!(),
            };
            let idx = if owner == export || exports_used.contains(&owner) {
                log::trace!("consulting exports for {id:?}");
                nested.state.export_type_map[&id]
            } else {
                log::trace!("consulting imports for {id:?}");
                nested.state.import_type_map[&id]
            };
            imports.push((name, ComponentExportKind::Type, idx))
        }

        // Before encoding exports reset the type map to what all was imported
        // from foreign interfaces. This will enable any encoded types below to
        // refer to imports which, after type substitution, will point to the
        // correct type in the outer component context.
        nested.type_map = imported_types;

        // Next the component reexports all of its imports, but notably uses the
        // type ascription feature to change the type of the function. Note that
        // no structural change is happening to the types here but instead types
        // are getting proper names and such now that this nested component is a
        // new type index space. Hence the `export_types = true` flag here which
        // flows through the type encoding and when types are emitted.
        nested.export_types = true;
        nested.func_type_map.clear();

        // To start off all type information is encoded. This will be used by
        // functions below but notably this also has special handling for
        // resources. Resources reexport their imported resource type under
        // the final name which achieves the desired goal of threading through
        // the original resource without creating a new one.
        for (_, id) in resolve.interfaces[export].types.iter() {
            let ty = &resolve.types[*id];
            match ty.kind {
                TypeDefKind::Resource => {
                    let idx = nested.component.export(
                        ty.name.as_ref().expect("resources must be named"),
                        ComponentExportKind::Type,
                        resources[id],
                        None,
                    );
                    nested.type_map.insert(*id, idx);
                }
                _ => {
                    nested.encode_valtype(resolve, &Type::Id(*id))?;
                }
            }
        }

        for (i, (_, func)) in resolve.interfaces[export].functions.iter().enumerate() {
            let ty = nested.encode_func_type(resolve, func)?;
            nested.component.export(
                &func.name,
                ComponentExportKind::Func,
                i as u32,
                Some(ComponentTypeRef::Func(ty)),
            );
        }

        // Embed the component within our component and then instantiate it with
        // the lifted functions. That final instance is then exported under the
        // appropriate name as the final typed export of this component.
        let component = nested.component;
        let component_index = self.component.component(component);
        let instance_index = self.component.instantiate(component_index, imports);
        let idx = self.component.export(
            export_name,
            ComponentExportKind::Instance,
            instance_index,
            None,
        );
        let prev = self.exported_instances.insert(export, idx);
        assert!(prev.is_none());

        // After everything is all said and done remove all the type information
        // about type exports of this interface. Any entries in the map
        // currently were used to create the instance above but aren't the
        // actual copy of the exported type since that comes from the exported
        // instance itself. Entries will be re-inserted into this map as
        // necessary via aliases from the exported instance which is the new
        // source of truth for all these types.
        for (_name, id) in resolve.interfaces[export].types.iter() {
            self.export_type_map.remove(id);
        }

        return Ok(());

        struct NestedComponentTypeEncoder<'state, 'a> {
            component: ComponentBuilder,
            type_map: HashMap<TypeId, u32>,
            func_type_map: HashMap<types::FunctionKey<'a>, u32>,
            export_types: bool,
            interface: InterfaceId,
            state: &'state mut EncodingState<'a>,
            imports: IndexMap<String, u32>,
        }

        impl<'a> ValtypeEncoder<'a> for NestedComponentTypeEncoder<'_, 'a> {
            fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) {
                self.component.type_defined()
            }
            fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) {
                self.component.type_function()
            }
            fn export_type(&mut self, idx: u32, name: &'a str) -> Option<u32> {
                if self.export_types {
                    Some(
                        self.component
                            .export(name, ComponentExportKind::Type, idx, None),
                    )
                } else {
                    let name = self.unique_import_name(name);
                    let ret = self
                        .component
                        .import(&name, ComponentTypeRef::Type(TypeBounds::Eq(idx)));
                    self.imports.insert(name, ret);
                    Some(ret)
                }
            }
            fn export_resource(&mut self, name: &'a str) -> u32 {
                if self.export_types {
                    panic!("resources should already be exported")
                } else {
                    let name = self.unique_import_name(name);
                    let ret = self
                        .component
                        .import(&name, ComponentTypeRef::Type(TypeBounds::SubResource));
                    self.imports.insert(name, ret);
                    ret
                }
            }
            fn import_type(&mut self, _: InterfaceId, _id: TypeId) -> u32 {
                unreachable!()
            }
            fn type_map(&mut self) -> &mut HashMap<TypeId, u32> {
                &mut self.type_map
            }
            fn func_type_map(&mut self) -> &mut HashMap<types::FunctionKey<'a>, u32> {
                &mut self.func_type_map
            }
            fn interface(&self) -> Option<InterfaceId> {
                Some(self.interface)
            }
        }

        impl NestedComponentTypeEncoder<'_, '_> {
            fn unique_import_name(&mut self, name: &str) -> String {
                let mut name = format!("import-type-{name}");
                let mut n = 0;
                while self.imports.contains_key(&name) {
                    name = format!("{name}{n}");
                    n += 1;
                }
                name
            }
        }

        fn import_func_name(f: &Function) -> String {
            match f.kind {
                FunctionKind::Freestanding => {
                    format!("import-func-{}", f.name)
                }

                // transform `[method]foo.bar` into `import-method-foo-bar` to
                // have it be a valid kebab-name which can't conflict with
                // anything else.
                //
                // There's probably a better and more "formal" way to do this
                // but quick-and-dirty string manipulation should work well
                // enough for now hopefully.
                FunctionKind::Method(_)
                | FunctionKind::Static(_)
                | FunctionKind::Constructor(_) => {
                    format!(
                        "import-{}",
                        f.name.replace('[', "").replace([']', '.'], "-")
                    )
                }
            }
        }
    }

    fn encode_lift(
        &mut self,
        module: CustomModule<'_>,
        core_name: &str,
        key: &WorldKey,
        func: &Function,
        ty: u32,
    ) -> Result<u32> {
        let resolve = &self.info.encoder.metadata.resolve;
        let metadata = self.info.module_metadata_for(module);
        let instance_index = self.instance_for(module);
        let core_func_index = self.core_alias_export(instance_index, core_name, ExportKind::Func);

        let options = RequiredOptions::for_export(resolve, func);

        let encoding = metadata
            .export_encodings
            .get(resolve, key, &func.name)
            .unwrap();
        let exports = self.info.exports_for(module);
        let realloc_index = exports
            .export_realloc_for(key, func)
            .map(|name| self.core_alias_export(instance_index, name, ExportKind::Func));
        let mut options = options
            .into_iter(encoding, self.memory_index, realloc_index)?
            .collect::<Vec<_>>();

        if let Some(post_return) = exports.post_return(key, func) {
            let post_return = self.core_alias_export(instance_index, post_return, ExportKind::Func);
            options.push(CanonicalOption::PostReturn(post_return));
        }
        let func_index = self.component.lift_func(core_func_index, ty, options);
        Ok(func_index)
    }

    fn encode_shim_instantiation(&mut self) -> Result<Shims<'a>> {
        let mut ret = Shims::default();

        ret.append_indirect(self.info, CustomModule::Main)
            .context("failed to register indirect shims for main module")?;

        // For all required adapter modules a shim is created for each required
        // function and additionally a set of shims are created for the
        // interface imported into the shim module itself.
        for (adapter_name, _adapter) in self.info.adapters.iter() {
            ret.append_indirect(self.info, CustomModule::Adapter(adapter_name))
                .with_context(|| {
                    format!("failed to register indirect shims for adapter {adapter_name}")
                })?;
        }

        if ret.shims.is_empty() {
            return Ok(ret);
        }

        assert!(self.shim_instance_index.is_none());
        assert!(self.fixups_module_index.is_none());

        // This function encodes two modules:
        // - A shim module that defines a table and exports functions
        //   that indirectly call through the table.
        // - A fixup module that imports that table and a set of functions
        //   and populates the imported table via active element segments. The
        //   fixup module is used to populate the shim's table once the
        //   imported functions have been lowered.

        let mut types = TypeSection::new();
        let mut tables = TableSection::new();
        let mut functions = FunctionSection::new();
        let mut exports = ExportSection::new();
        let mut code = CodeSection::new();
        let mut sigs = IndexMap::new();
        let mut imports_section = ImportSection::new();
        let mut elements = ElementSection::new();
        let mut func_indexes = Vec::new();
        let mut func_names = NameMap::new();

        for (i, shim) in ret.shims.values().enumerate() {
            let i = i as u32;
            let type_index = *sigs.entry(&shim.sig).or_insert_with(|| {
                let index = types.len();
                types.ty().function(
                    shim.sig.params.iter().map(to_val_type),
                    shim.sig.results.iter().map(to_val_type),
                );
                index
            });

            functions.function(type_index);
            Self::encode_shim_function(type_index, i, &mut code, shim.sig.params.len() as u32);
            exports.export(&shim.name, ExportKind::Func, i);

            imports_section.import("", &shim.name, EntityType::Function(type_index));
            func_indexes.push(i);
            func_names.append(i, &shim.debug_name);
        }
        let mut names = NameSection::new();
        names.module("wit-component:shim");
        names.functions(&func_names);

        let table_type = TableType {
            element_type: RefType::FUNCREF,
            minimum: ret.shims.len() as u64,
            maximum: Some(ret.shims.len() as u64),
            table64: false,
            shared: false,
        };

        tables.table(table_type);

        exports.export(INDIRECT_TABLE_NAME, ExportKind::Table, 0);
        imports_section.import("", INDIRECT_TABLE_NAME, table_type);

        elements.active(
            None,
            &ConstExpr::i32_const(0),
            Elements::Functions(func_indexes.into()),
        );

        let mut shim = Module::new();
        shim.section(&types);
        shim.section(&functions);
        shim.section(&tables);
        shim.section(&exports);
        shim.section(&code);
        shim.section(&RawCustomSection(
            &crate::base_producers().raw_custom_section(),
        ));
        shim.section(&names);

        let mut fixups = Module::default();
        fixups.section(&types);
        fixups.section(&imports_section);
        fixups.section(&elements);
        fixups.section(&RawCustomSection(
            &crate::base_producers().raw_custom_section(),
        ));

        let mut names = NameSection::new();
        names.module("wit-component:fixups");
        fixups.section(&names);

        let shim_module_index = self.component.core_module(&shim);
        self.fixups_module_index = Some(self.component.core_module(&fixups));
        self.shim_instance_index = Some(self.component.core_instantiate(shim_module_index, []));

        return Ok(ret);
    }

    fn encode_shim_function(
        type_index: u32,
        func_index: u32,
        code: &mut CodeSection,
        param_count: u32,
    ) {
        let mut func = wasm_encoder::Function::new(std::iter::empty());
        for i in 0..param_count {
            func.instruction(&Instruction::LocalGet(i));
        }
        func.instruction(&Instruction::I32Const(func_index as i32));
        func.instruction(&Instruction::CallIndirect {
            type_index,
            table_index: 0,
        });
        func.instruction(&Instruction::End);
        code.function(&func);
    }

    fn encode_indirect_lowerings(&mut self, shims: &Shims<'_>) -> Result<()> {
        if shims.shims.is_empty() {
            return Ok(());
        }

        let shim_instance_index = self
            .shim_instance_index
            .expect("must have an instantiated shim");

        let table_index =
            self.core_alias_export(shim_instance_index, INDIRECT_TABLE_NAME, ExportKind::Table);

        let mut exports = Vec::new();
        exports.push((INDIRECT_TABLE_NAME, ExportKind::Table, table_index));

        for shim in shims.shims.values() {
            let core_func_index = match &shim.kind {
                // Indirect lowerings are a `canon lower`'d function with
                // options specified from a previously instantiated instance.
                // This previous instance could either be the main module or an
                // adapter module, which affects the `realloc` option here.
                // Currently only one linear memory is supported so the linear
                // memory always comes from the main module.
                ShimKind::IndirectLowering {
                    interface,
                    index,
                    realloc,
                    encoding,
                } => {
                    let interface = &self.info.import_map[interface];
                    let (name, _) = interface.lowerings.get_index(*index).unwrap();
                    let func_index = match &interface.interface {
                        Some(interface_id) => {
                            let instance_index = self.imported_instances[interface_id];
                            self.component.alias_export(
                                instance_index,
                                name,
                                ComponentExportKind::Func,
                            )
                        }
                        None => self.imported_funcs[name],
                    };

                    let realloc = self
                        .info
                        .exports_for(*realloc)
                        .import_realloc_for(interface.interface, name)
                        .map(|name| {
                            let instance = self.instance_for(*realloc);
                            self.core_alias_export(instance, name, ExportKind::Func)
                        });

                    self.component.lower_func(
                        func_index,
                        shim.options
                            .into_iter(*encoding, self.memory_index, realloc)?,
                    )
                }

                // Adapter shims are defined by an export from an adapter
                // instance, so use the specified name here and the previously
                // created instances to get the core item that represents the
                // shim.
                ShimKind::Adapter { adapter, func } => {
                    self.core_alias_export(self.adapter_instances[adapter], func, ExportKind::Func)
                }

                // Resources are required for a module to be instantiated
                // meaning that any destructor for the resource must be called
                // indirectly due to the otherwise circular dependency between
                // the module and the resource itself.
                ShimKind::ResourceDtor { module, export } => {
                    self.core_alias_export(self.instance_for(*module), export, ExportKind::Func)
                }
            };

            exports.push((shim.name.as_str(), ExportKind::Func, core_func_index));
        }

        let instance_index = self.component.core_instantiate_exports(exports);
        self.component.core_instantiate(
            self.fixups_module_index.expect("must have fixup module"),
            [("", ModuleArg::Instance(instance_index))],
        );
        Ok(())
    }

    /// This is a helper function that will declare, in the component itself,
    /// all exported resources.
    ///
    /// These resources later on get packaged up into instances and such. The
    /// main thing that this handles is that it registers the right destructor
    /// from `shims`, if needed, for each resource.
    fn declare_exported_resources(&mut self, shims: &Shims<'_>) {
        let resolve = &self.info.encoder.metadata.resolve;
        let world = &resolve.worlds[self.info.encoder.metadata.world];

        // Iterate over the main module's exports and the exports of all
        // adapters. Look for exported interfaces that themselves have
        // resources.
        let main_module_keys = self.info.encoder.main_module_exports.iter();
        let main_module_keys = main_module_keys.map(|key| (CustomModule::Main, key));
        let adapter_keys = self.info.encoder.adapters.iter().flat_map(|(name, info)| {
            info.required_exports
                .iter()
                .map(move |key| (CustomModule::Adapter(name), key))
        });
        for (for_module, key) in main_module_keys.chain(adapter_keys) {
            let id = match &world.exports[key] {
                WorldItem::Interface { id, .. } => *id,
                WorldItem::Type { .. } => unreachable!(),
                WorldItem::Function(_) => continue,
            };

            for ty in resolve.interfaces[id].types.values() {
                match resolve.types[*ty].kind {
                    TypeDefKind::Resource => {}
                    _ => continue,
                }

                // Load the destructor, previously detected in module
                // validation, if one is present.
                let exports = self.info.exports_for(for_module);
                let dtor = exports.resource_dtor(*ty).map(|name| {
                    let name = &shims.shims[&ShimKind::ResourceDtor {
                        module: for_module,
                        export: name,
                    }]
                        .name;
                    let shim = self.shim_instance_index.unwrap();
                    self.core_alias_export(shim, name, ExportKind::Func)
                });

                // Declare the resource with this destructor and register it in
                // our internal map. This should be the first and only time this
                // type is inserted into this map.
                let resource_idx = self.component.type_resource(ValType::I32, dtor);
                let prev = self.export_type_map.insert(*ty, resource_idx);
                assert!(prev.is_none());
            }
        }
    }

    /// Helper to instantiate the main module and record various results of its
    /// instantiation within `self`.
    fn instantiate_main_module(&mut self, shims: &Shims<'_>) -> Result<()> {
        assert!(self.instance_index.is_none());

        let instance_index = self.instantiate_core_module(shims, CustomModule::Main)?;

        if let Some(memory) = self.info.info.exports.memory() {
            self.memory_index =
                Some(self.core_alias_export(instance_index, memory, ExportKind::Memory));
        }

        self.instance_index = Some(instance_index);
        Ok(())
    }

    /// This function will instantiate the specified adapter module, which may
    /// depend on previously-instantiated modules.
    fn instantiate_adapter_module(&mut self, shims: &Shims<'_>, name: &'a str) -> Result<()> {
        let instance = self.instantiate_core_module(shims, CustomModule::Adapter(name))?;
        self.adapter_instances.insert(name, instance);
        Ok(())
    }

    /// Generic helper to instantiate a module.
    ///
    /// The `for_module` provided will have all of its imports satisfied from
    /// either previous instantiations or the `shims` module present. This
    /// iterates over the metadata produced during validation to determine what
    /// hooks up to what import.
    fn instantiate_core_module(
        &mut self,
        shims: &Shims,
        for_module: CustomModule<'_>,
    ) -> Result<u32> {
        let module = self.module_for(for_module);

        let mut args = Vec::new();
        for (core_wasm_name, instance) in self.info.imports_for(for_module).modules() {
            match instance {
                // For import modules that are a "bag of names" iterate over
                // each name and materialize it into this component with the
                // `materialize_import` helper. This is then all bottled up into
                // a bag-of-exports instances which is then used for
                // instantiation.
                ImportInstance::Names(names) => {
                    let mut exports = Vec::new();
                    for (name, import) in names {
                        let (kind, index) = self
                            .materialize_import(&shims, for_module, core_wasm_name, name, import)
                            .with_context(|| {
                                format!("failed to satisfy import `{core_wasm_name}::{name}`")
                            })?;
                        exports.push((name.as_str(), kind, index));
                    }
                    let index = self.component.core_instantiate_exports(exports);
                    args.push((core_wasm_name.as_str(), ModuleArg::Instance(index)));
                }

                // Some imports are entire instances, so use the instance for
                // the module identifier as the import.
                ImportInstance::Whole(which) => {
                    let instance = self.instance_for(which.to_custom_module());
                    args.push((core_wasm_name.as_str(), ModuleArg::Instance(instance)));
                }
            }
        }

        // And with all arguments prepared now, instantiate the module.
        Ok(self.component.core_instantiate(module, args))
    }

    /// Helper function to materialize an import into a core module within the
    /// component being built.
    ///
    /// This function is called for individual imports and uses the results of
    /// validation, notably the `Import` type, to determine what WIT-level or
    /// component-level construct is being hooked up.
    fn materialize_import(
        &mut self,
        shims: &Shims<'_>,
        for_module: CustomModule<'_>,
        module: &str,
        field: &str,
        import: &Import,
    ) -> Result<(ExportKind, u32)> {
        log::trace!("attempting to materialize import of `{module}::{field}` for {for_module:?}");
        let resolve = &self.info.encoder.metadata.resolve;
        let name_tmp;
        let (key, name, interface_key) = match import {
            // Main module dependencies on an adapter in use are done with an
            // indirection here, so load the shim function and use that.
            Import::AdapterExport(_) => {
                assert!(self.info.encoder.adapters.contains_key(module));
                let shim_instance = self
                    .shim_instance_index
                    .expect("shim should be instantiated");
                let index = self.core_alias_export(
                    shim_instance,
                    &shims.shims[&ShimKind::Adapter {
                        adapter: module,
                        func: field,
                    }]
                        .name,
                    ExportKind::Func,
                );
                return Ok((ExportKind::Func, index));
            }

            // Adapters might uset he main module's memory, in which case it
            // should have been previously instantiated.
            Import::MainModuleMemory => {
                let index = self
                    .memory_index
                    .ok_or_else(|| anyhow!("main module cannot import memory"))?;
                return Ok((ExportKind::Memory, index));
            }

            // Grab-bag of "this adapter wants this thing from the main module".
            Import::MainModuleExport { name, kind } => {
                let instance = self.instance_index.unwrap();
                let index = self.core_alias_export(instance, name, *kind);
                return Ok((*kind, index));
            }

            // A similar grab-bag to above but with a slightly different
            // structure. Should probably refactor to make these two the same in
            // the future.
            Import::Item(item) => {
                let instance = self.instance_for(item.which.to_custom_module());
                let index = self.core_alias_export(instance, &item.name, item.kind);
                return Ok((item.kind, index));
            }

            // Resource intrinsics related to exported resources. Despite being
            // an exported resource the component still provides necessary
            // intrinsics for manipulating resource state. These are all
            // handled here using the resource types created during
            // `declare_exported_resources` above.
            Import::ExportedResourceDrop(_key, id) => {
                let index = self.component.resource_drop(self.export_type_map[id]);
                return Ok((ExportKind::Func, index));
            }
            Import::ExportedResourceRep(_key, id) => {
                let index = self.component.resource_rep(self.export_type_map[id]);
                return Ok((ExportKind::Func, index));
            }
            Import::ExportedResourceNew(_key, id) => {
                let index = self.component.resource_new(self.export_type_map[id]);
                return Ok((ExportKind::Func, index));
            }

            // And finally here at the end these cases are going to all fall
            // through to the code below. This is where these are connected to a
            // WIT `ImportedInterface` one way or another with the name that was
            // detected during validation.
            Import::ImportedResourceDrop(key, iface, id) => {
                let ty = &resolve.types[*id];
                let name = ty.name.as_ref().unwrap();
                name_tmp = format!("{name}_drop");
                (key, &name_tmp, iface.map(|_| resolve.name_world_key(key)))
            }
            Import::WorldFunc(key, name) => (key, name, None),
            Import::InterfaceFunc(key, _, name) => (key, name, Some(resolve.name_world_key(key))),
        };

        let import = &self.info.import_map[&interface_key];
        let (index, _, lowering) = import.lowerings.get_full(name).unwrap();
        let metadata = self.info.module_metadata_for(for_module);

        let index = match lowering {
            // All direct lowerings can be `canon lower`'d here immediately
            // and passed as arguments.
            Lowering::Direct => {
                let func_index = match &import.interface {
                    Some(interface) => {
                        let instance_index = self.imported_instances[interface];
                        self.component
                            .alias_export(instance_index, name, ComponentExportKind::Func)
                    }
                    None => self.imported_funcs[name],
                };
                self.component.lower_func(func_index, [])
            }

            // Indirect lowerings come from the shim that was previously
            // created, so the specific export is loaded here and used as an
            // import.
            Lowering::Indirect { .. } => {
                let encoding = metadata.import_encodings.get(resolve, key, name).unwrap();
                self.core_alias_export(
                    self.shim_instance_index
                        .expect("shim should be instantiated"),
                    &shims.shims[&ShimKind::IndirectLowering {
                        interface: interface_key,
                        index,
                        realloc: for_module,
                        encoding,
                    }]
                        .name,
                    ExportKind::Func,
                )
            }

            // A "resource drop" intrinsic only needs to find the index of the
            // resource type itself and then the intrinsic is declared.
            Lowering::ResourceDrop(id) => {
                let resource_idx = self.lookup_resource_index(*id);
                self.component.resource_drop(resource_idx)
            }
        };
        Ok((ExportKind::Func, index))
    }

    /// Generates component bits that are responsible for executing
    /// `_initialize`, if found, in the original component.
    ///
    /// The `_initialize` function was a part of WASIp1 where it generally is
    /// intended to run after imports and memory and such are all "hooked up"
    /// and performs other various initialization tasks. This is additionally
    /// specified in https://github.com/WebAssembly/component-model/pull/378
    /// to be part of the component model lowerings as well.
    ///
    /// This implements this functionality by encoding a core module that
    /// imports a function and then registers a `start` section with that
    /// imported function. This is all encoded after the
    /// imports/lowerings/tables/etc are all filled in above meaning that this
    /// is the last piece to run. That means that when this is running
    /// everything should be hooked up for all imported functions to work.
    ///
    /// Note that at this time `_initialize` is only detected in the "main
    /// module", not adapters/libraries.
    fn encode_initialize_with_start(&mut self) -> Result<()> {
        let initialize = match self.info.info.exports.initialize() {
            Some(name) => name,
            // If this core module didn't have `_initialize` or similar, then
            // there's nothing to do here.
            None => return Ok(()),
        };
        let initialize_index =
            self.core_alias_export(self.instance_index.unwrap(), initialize, ExportKind::Func);
        let mut shim = Module::default();
        let mut section = TypeSection::new();
        section.ty().function([], []);
        shim.section(&section);
        let mut section = ImportSection::new();
        section.import("", "", EntityType::Function(0));
        shim.section(&section);
        shim.section(&StartSection { function_index: 0 });

        // Declare the core module within the component, create a dummy core
        // instance with one export of our `_initialize` function, and then use
        // that to instantiate the module we emit to run the `start` function in
        // core wasm to run `_initialize`.
        let shim_module_index = self.component.core_module(&shim);
        let shim_args_instance_index =
            self.component
                .core_instantiate_exports([("", ExportKind::Func, initialize_index)]);
        self.component.core_instantiate(
            shim_module_index,
            [("", ModuleArg::Instance(shim_args_instance_index))],
        );
        Ok(())
    }

    /// Convenience function to go from `CustomModule` to the instance index
    /// corresponding to what that points to.
    fn instance_for(&self, module: CustomModule) -> u32 {
        match module {
            CustomModule::Main => self.instance_index.expect("instantiated by now"),
            CustomModule::Adapter(name) => self.adapter_instances[name],
        }
    }

    /// Convenience function to go from `CustomModule` to the module index
    /// corresponding to what that points to.
    fn module_for(&self, module: CustomModule) -> u32 {
        match module {
            CustomModule::Main => self.module_index.unwrap(),
            CustomModule::Adapter(name) => self.adapter_modules[name],
        }
    }

    /// Convenience function which caches aliases created so repeated calls to
    /// this function will all return the same index.
    fn core_alias_export(&mut self, instance: u32, name: &str, kind: ExportKind) -> u32 {
        *self
            .aliased_core_items
            .entry((instance, name.to_string()))
            .or_insert_with(|| self.component.core_alias_export(instance, name, kind))
    }
}

/// A list of "shims" which start out during the component instantiation process
/// as functions which immediately trap due to a `call_indirect`-to-`null` but
/// will get filled in by the time the component instantiation process
/// completes.
///
/// Shims currently include:
///
/// * "Indirect functions" lowered from imported instances where the lowering
///   requires an item exported from the main module. These are indirect due to
///   the circular dependency between the module needing an import and the
///   import needing the module.
///
/// * Adapter modules which convert from a historical ABI to the component
///   model's ABI (e.g. wasi preview1 to preview2) get a shim since the adapters
///   are currently indicated as always requiring the memory of the main module.
///
/// This structure is created by `encode_shim_instantiation`.
#[derive(Default)]
struct Shims<'a> {
    /// The list of all shims that a module will require.
    shims: IndexMap<ShimKind<'a>, Shim<'a>>,
}

struct Shim<'a> {
    /// Canonical ABI options required by this shim, used during `canon lower`
    /// operations.
    options: RequiredOptions,

    /// The name, in the shim instance, of this shim.
    ///
    /// Currently this is `"0"`, `"1"`, ...
    name: String,

    /// A human-readable debugging name for this shim, used in a core wasm
    /// `name` section.
    debug_name: String,

    /// Precise information about what this shim is a lowering of.
    kind: ShimKind<'a>,

    /// Wasm type of this shim.
    sig: WasmSignature,
}

#[derive(Debug, Clone, Hash, Eq, PartialEq)]
enum ShimKind<'a> {
    /// This shim is a late indirect lowering of an imported function in a
    /// component which is only possible after prior core wasm modules are
    /// instantiated so their memories and functions are available.
    IndirectLowering {
        /// The name of the interface that's being lowered.
        interface: Option<String>,
        /// The index within the `lowerings` array of the function being lowered.
        index: usize,
        /// Which instance to pull the `realloc` function from, if necessary.
        realloc: CustomModule<'a>,
        /// The string encoding that this lowering is going to use.
        encoding: StringEncoding,
    },
    /// This shim is a core wasm function defined in an adapter module but isn't
    /// available until the adapter module is itself instantiated.
    Adapter {
        /// The name of the adapter module this shim comes from.
        adapter: &'a str,
        /// The name of the export in the adapter module this shim points to.
        func: &'a str,
    },
    /// A shim used as the destructor for a resource which allows defining the
    /// resource before the core module being instantiated.
    ResourceDtor {
        /// Which instance to pull the destructor function from.
        module: CustomModule<'a>,
        /// The exported function name of this destructor in the core module.
        export: &'a str,
    },
}

/// Indicator for which module is being used for a lowering or where options
/// like `realloc` are drawn from.
///
/// This is necessary for situations such as an imported function being lowered
/// into the main module and additionally into an adapter module. For example an
/// adapter might adapt from preview1 to preview2 for the standard library of a
/// programming language but the main module's custom application code may also
/// explicitly import from preview2. These two different lowerings of a preview2
/// function are parameterized by this enumeration.
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
enum CustomModule<'a> {
    /// This points to the "main module" which is generally the "output of LLVM"
    /// or what a user wrote.
    Main,
    /// This is selecting an adapter module, identified by name here, where
    /// something is being lowered into.
    Adapter(&'a str),
}

impl<'a> Shims<'a> {
    /// Adds all shims necessary for the instantiation of `for_module`.
    ///
    /// This function will iterate over all the imports required by this module
    /// and for those that require a shim they're registered here.
    fn append_indirect(
        &mut self,
        world: &'a ComponentWorld<'a>,
        for_module: CustomModule<'a>,
    ) -> Result<()> {
        let module_imports = world.imports_for(for_module);
        let module_exports = world.exports_for(for_module);
        let metadata = world.module_metadata_for(for_module);
        let resolve = &world.encoder.metadata.resolve;

        for (module, field, import) in module_imports.imports() {
            let (key, name, interface_key) = match import {
                // These imports don't require shims, they can be satisfied
                // as-needed when required.
                Import::ImportedResourceDrop(..)
                | Import::MainModuleMemory
                | Import::MainModuleExport { .. }
                | Import::Item(_)
                | Import::ExportedResourceDrop(..)
                | Import::ExportedResourceRep(..)
                | Import::ExportedResourceNew(..) => continue,

                // Adapter imports into the main module must got through an
                // indirection, so that's registered here.
                Import::AdapterExport(ty) => {
                    let name = self.shims.len().to_string();
                    log::debug!("shim {name} is adapter `{module}::{field}`");
                    self.push(Shim {
                        name,
                        debug_name: format!("adapt-{module}-{field}"),
                        // Pessimistically assume that all adapters require
                        // memory in one form or another. While this isn't
                        // technically true it's true enough for WASI.
                        options: RequiredOptions::MEMORY,
                        kind: ShimKind::Adapter {
                            adapter: module,
                            func: field,
                        },
                        sig: WasmSignature {
                            params: ty.params().iter().map(to_wasm_type).collect(),
                            results: ty.results().iter().map(to_wasm_type).collect(),
                            indirect_params: false,
                            retptr: false,
                        },
                    });
                    continue;

                    fn to_wasm_type(ty: &wasmparser::ValType) -> WasmType {
                        match ty {
                            wasmparser::ValType::I32 => WasmType::I32,
                            wasmparser::ValType::I64 => WasmType::I64,
                            wasmparser::ValType::F32 => WasmType::F32,
                            wasmparser::ValType::F64 => WasmType::F64,
                            _ => unreachable!(),
                        }
                    }
                }

                // WIT-level functions may require an indirection, so yield some
                // metadata out of this `match` to the loop below to figure that
                // out.
                Import::InterfaceFunc(key, _, name) => {
                    (key, name, Some(resolve.name_world_key(key)))
                }
                Import::WorldFunc(key, name) => (key, name, None),
            };
            let interface = &world.import_map[&interface_key];
            let (index, _, lowering) = interface.lowerings.get_full(name).unwrap();
            let shim_name = self.shims.len().to_string();
            match lowering {
                Lowering::Direct | Lowering::ResourceDrop(_) => {}

                Lowering::Indirect { sig, options } => {
                    log::debug!(
                        "shim {shim_name} is import `{module}::{field}` lowering {index} `{name}`",
                    );
                    let encoding = metadata
                        .import_encodings
                        .get(resolve, key, name)
                        .ok_or_else(|| {
                            anyhow::anyhow!(
                                "missing component metadata for import of \
                                `{module}::{field}`"
                            )
                        })?;
                    self.push(Shim {
                        name: shim_name,
                        debug_name: format!("indirect-{module}-{field}"),
                        options: *options,
                        kind: ShimKind::IndirectLowering {
                            interface: interface_key,
                            index,
                            realloc: for_module,
                            encoding,
                        },
                        sig: sig.clone(),
                    });
                }
            }
        }

        // In addition to all the shims added for imports above this module also
        // requires shims for resource destructors that it exports. Resource
        // types are declared before the module is instantiated so the actual
        // destructor is registered as a shim (defined here) and it's then
        // filled in with the module's exports later.
        for (export_name, export) in module_exports.iter() {
            let id = match export {
                Export::ResourceDtor(id) => id,
                _ => continue,
            };
            let resource = resolve.types[*id].name.as_ref().unwrap();
            let name = self.shims.len().to_string();
            self.push(Shim {
                name,
                debug_name: format!("dtor-{resource}"),
                options: RequiredOptions::empty(),
                kind: ShimKind::ResourceDtor {
                    module: for_module,
                    export: export_name,
                },
                sig: WasmSignature {
                    params: vec![WasmType::I32],
                    results: Vec::new(),
                    indirect_params: false,
                    retptr: false,
                },
            });
        }

        Ok(())
    }

    fn push(&mut self, shim: Shim<'a>) {
        // Only one shim per `ShimKind` is retained, so if it's already present
        // don't overwrite it. If it's not present though go ahead and insert
        // it.
        if !self.shims.contains_key(&shim.kind) {
            self.shims.insert(shim.kind.clone(), shim);
        }
    }
}

/// Alias argument to an instantiation
#[derive(Clone, Debug)]
pub struct Item {
    pub alias: String,
    pub kind: ExportKind,
    pub which: MainOrAdapter,
    pub name: String,
}

/// Module argument to an instantiation
#[derive(Debug, PartialEq, Clone)]
pub enum MainOrAdapter {
    Main,
    Adapter(String),
}

impl MainOrAdapter {
    fn to_custom_module(&self) -> CustomModule<'_> {
        match self {
            MainOrAdapter::Main => CustomModule::Main,
            MainOrAdapter::Adapter(s) => CustomModule::Adapter(s),
        }
    }
}

/// Module instantiation argument
#[derive(Clone)]
pub enum Instance {
    /// Module argument
    MainOrAdapter(MainOrAdapter),

    /// Alias argument
    Items(Vec<Item>),
}

/// Provides fine-grained control of how a library module is instantiated
/// relative to other module instances
#[derive(Clone)]
pub struct LibraryInfo {
    /// If true, instantiate any shims prior to this module
    pub instantiate_after_shims: bool,

    /// Instantiation arguments
    pub arguments: Vec<(String, Instance)>,
}

/// Represents an adapter or library to be instantiated as part of the component
pub(super) struct Adapter {
    /// The wasm of the module itself, with `component-type` sections stripped
    wasm: Vec<u8>,

    /// The metadata for the adapter
    metadata: ModuleMetadata,

    /// The set of exports from the final world which are defined by this
    /// adapter or library
    required_exports: IndexSet<WorldKey>,

    /// If present, treat this module as a library rather than a "minimal" adapter
    ///
    /// TODO: We should refactor how various flavors of module are represented
    /// and differentiated to avoid mistaking one for another.
    library_info: Option<LibraryInfo>,
}

/// An encoder of components based on `wit` interface definitions.
#[derive(Default)]
pub struct ComponentEncoder {
    module: Vec<u8>,
    pub(super) metadata: Bindgen,
    validate: bool,
    pub(super) main_module_exports: IndexSet<WorldKey>,
    pub(super) adapters: IndexMap<String, Adapter>,
    import_name_map: HashMap<String, String>,
    realloc_via_memory_grow: bool,
    merge_imports_based_on_semver: Option<bool>,
    pub(super) reject_legacy_names: bool,
}

impl ComponentEncoder {
    /// Set the core module to encode as a component.
    /// This method will also parse any component type information stored in custom sections
    /// inside the module, and add them as the interface, imports, and exports.
    /// It will also add any producers information inside the component type information to the
    /// core module.
    pub fn module(mut self, module: &[u8]) -> Result<Self> {
        let (wasm, metadata) = self.decode(module)?;
        let exports = self
            .merge_metadata(metadata)
            .context("failed merge WIT metadata for module with previous metadata")?;
        self.main_module_exports.extend(exports);
        self.module = if let Some(producers) = &self.metadata.producers {
            producers.add_to_wasm(&wasm)?
        } else {
            wasm.to_vec()
        };
        Ok(self)
    }

    fn decode<'a>(&self, wasm: &'a [u8]) -> Result<(Cow<'a, [u8]>, Bindgen)> {
        let (bytes, metadata) = metadata::decode(wasm)?;
        match bytes {
            Some(wasm) => Ok((Cow::Owned(wasm), metadata)),
            None => Ok((Cow::Borrowed(wasm), metadata)),
        }
    }

    fn merge_metadata(&mut self, metadata: Bindgen) -> Result<IndexSet<WorldKey>> {
        self.metadata.merge(metadata)
    }

    /// Sets whether or not the encoder will validate its output.
    pub fn validate(mut self, validate: bool) -> Self {
        self.validate = validate;
        self
    }

    /// Sets whether to merge imports based on semver to the specified value.
    ///
    /// This affects how when to WIT worlds are merged together, for example
    /// from two different libraries, whether their imports are unified when the
    /// semver version ranges for interface allow it.
    ///
    /// This is enabled by default.
    pub fn merge_imports_based_on_semver(mut self, merge: bool) -> Self {
        self.merge_imports_based_on_semver = Some(merge);
        self
    }

    /// Sets whether to reject the historical mangling/name scheme for core wasm
    /// imports/exports as they map to the component model.
    ///
    /// The `wit-component` crate supported a different set of names prior to
    /// WebAssembly/component-model#378 and this can be used to disable this
    /// support.
    ///
    /// This is disabled by default.
    pub fn reject_legacy_names(mut self, reject: bool) -> Self {
        self.reject_legacy_names = reject;
        self
    }

    /// Specifies a new adapter which is used to translate from a historical
    /// wasm ABI to the canonical ABI and the `interface` provided.
    ///
    /// This is primarily used to polyfill, for example,
    /// `wasi_snapshot_preview1` with a component-model using interface. The
    /// `name` provided is the module name of the adapter that is being
    /// polyfilled, for example `"wasi_snapshot_preview1"`.
    ///
    /// The `bytes` provided is a core wasm module which implements the `name`
    /// interface in terms of the `interface` interface. This core wasm module
    /// is severely restricted in its shape, for example it cannot have any data
    /// segments or element segments.
    ///
    /// The `interface` provided is the component-model-using-interface that the
    /// wasm module specified by `bytes` imports. The `bytes` will then import
    /// `interface` and export functions to get imported from the module `name`
    /// in the core wasm that's being wrapped.
    pub fn adapter(self, name: &str, bytes: &[u8]) -> Result<Self> {
        self.library_or_adapter(name, bytes, None)
    }

    /// Specifies a shared-everything library to link into the component.
    ///
    /// Unlike adapters, libraries _may_ have data and/or element segments, but
    /// they must operate on an imported memory and table, respectively.  In
    /// this case, the correct amount of space is presumed to have been
    /// statically allocated in the main module's memory and table at the
    /// offsets which the segments target, e.g. as arranged by
    /// [super::linking::Linker].
    ///
    /// Libraries are treated similarly to adapters, except that they are not
    /// "minified" the way adapters are, and instantiation is controlled
    /// declaratively via the `library_info` parameter.
    pub fn library(self, name: &str, bytes: &[u8], library_info: LibraryInfo) -> Result<Self> {
        self.library_or_adapter(name, bytes, Some(library_info))
    }

    fn library_or_adapter(
        mut self,
        name: &str,
        bytes: &[u8],
        library_info: Option<LibraryInfo>,
    ) -> Result<Self> {
        let (wasm, mut metadata) = self.decode(bytes)?;
        // Merge the adapter's document into our own document to have one large
        // document, and then afterwards merge worlds as well.
        //
        // Note that the `metadata` tracking import/export encodings is removed
        // since this adapter can get different lowerings and is allowed to
        // differ from the main module. This is then tracked within the
        // `Adapter` structure produced below.
        let adapter_metadata = mem::take(&mut metadata.metadata);
        let exports = self.merge_metadata(metadata).with_context(|| {
            format!("failed to merge WIT packages of adapter `{name}` into main packages")
        })?;
        if let Some(library_info) = &library_info {
            // Validate that all referenced modules can be resolved.
            for (_, instance) in &library_info.arguments {
                let resolve = |which: &_| match which {
                    MainOrAdapter::Main => Ok(()),
                    MainOrAdapter::Adapter(name) => {
                        if self.adapters.contains_key(name.as_str()) {
                            Ok(())
                        } else {
                            Err(anyhow!("instance refers to unknown adapter `{name}`"))
                        }
                    }
                };

                match instance {
                    Instance::MainOrAdapter(which) => resolve(which)?,
                    Instance::Items(items) => {
                        for item in items {
                            resolve(&item.which)?;
                        }
                    }
                }
            }
        }
        self.adapters.insert(
            name.to_string(),
            Adapter {
                wasm: wasm.to_vec(),
                metadata: adapter_metadata,
                required_exports: exports,
                library_info,
            },
        );
        Ok(self)
    }

    /// True if the realloc and stack allocation should use memory.grow
    /// The default is to use the main module realloc
    /// Can be useful if cabi_realloc cannot be called before the host
    /// runtime is initialized.
    pub fn realloc_via_memory_grow(mut self, value: bool) -> Self {
        self.realloc_via_memory_grow = value;
        self
    }

    /// The instance import name map to use.
    ///
    /// This is used to rename instance imports in the final component.
    ///
    /// For example, if there is an instance import `foo:bar/baz` and it is
    /// desired that the import actually be an `unlocked-dep` name, then
    /// `foo:bar/baz` can be mapped to `unlocked-dep=<a:b/c@{>=x.y.z}>`.
    ///
    /// Note: the replacement names are not validated during encoding unless
    /// the `validate` option is set to true.
    pub fn import_name_map(mut self, map: HashMap<String, String>) -> Self {
        self.import_name_map = map;
        self
    }

    /// Encode the component and return the bytes.
    pub fn encode(&mut self) -> Result<Vec<u8>> {
        if self.module.is_empty() {
            bail!("a module is required when encoding a component");
        }

        if self.merge_imports_based_on_semver.unwrap_or(true) {
            self.metadata
                .resolve
                .merge_world_imports_based_on_semver(self.metadata.world)?;
        }

        let world = ComponentWorld::new(self).context("failed to decode world from module")?;
        let mut state = EncodingState {
            component: ComponentBuilder::default(),
            module_index: None,
            instance_index: None,
            memory_index: None,
            shim_instance_index: None,
            fixups_module_index: None,
            adapter_modules: IndexMap::new(),
            adapter_instances: IndexMap::new(),
            import_type_map: HashMap::new(),
            import_func_type_map: HashMap::new(),
            export_type_map: HashMap::new(),
            export_func_type_map: HashMap::new(),
            imported_instances: Default::default(),
            imported_funcs: Default::default(),
            exported_instances: Default::default(),
            aliased_core_items: Default::default(),
            info: &world,
        };
        state.encode_imports(&self.import_name_map)?;
        state.encode_core_modules();
        state.encode_core_instantiation()?;
        state.encode_exports(CustomModule::Main)?;
        for name in self.adapters.keys() {
            state.encode_exports(CustomModule::Adapter(name))?;
        }
        state
            .component
            .raw_custom_section(&crate::base_producers().raw_custom_section());
        let bytes = state.component.finish();

        if self.validate {
            Validator::new()
                .validate_all(&bytes)
                .context("failed to validate component output")?;
        }

        Ok(bytes)
    }
}

impl ComponentWorld<'_> {
    /// Convenience function to lookup a module's import map.
    fn imports_for(&self, module: CustomModule) -> &ImportMap {
        match module {
            CustomModule::Main => &self.info.imports,
            CustomModule::Adapter(name) => &self.adapters[name].info.imports,
        }
    }

    /// Convenience function to lookup a module's export map.
    fn exports_for(&self, module: CustomModule) -> &ExportMap {
        match module {
            CustomModule::Main => &self.info.exports,
            CustomModule::Adapter(name) => &self.adapters[name].info.exports,
        }
    }

    /// Convenience function to lookup a module's metadata.
    fn module_metadata_for(&self, module: CustomModule) -> &ModuleMetadata {
        match module {
            CustomModule::Main => &self.encoder.metadata.metadata,
            CustomModule::Adapter(name) => &self.encoder.adapters[name].metadata,
        }
    }
}

#[cfg(all(test, feature = "dummy-module"))]
mod test {
    use super::*;
    use crate::{dummy_module, embed_component_metadata};
    use wit_parser::Mangling;

    #[test]
    fn it_renames_imports() {
        let mut resolve = Resolve::new();
        let pkg = resolve
            .push_str(
                "test.wit",
                r#"
package test:wit;

interface i {
    f: func();
}

world test {
    import i;
    import foo: interface {
        f: func();
    }
}
"#,
            )
            .unwrap();
        let world = resolve.select_world(pkg, None).unwrap();

        let mut module = dummy_module(&resolve, world, Mangling::Standard32);

        embed_component_metadata(&mut module, &resolve, world, StringEncoding::UTF8).unwrap();

        let encoded = ComponentEncoder::default()
            .import_name_map(HashMap::from([
                (
                    "foo".to_string(),
                    "unlocked-dep=<foo:bar/foo@{>=1.0.0 <1.1.0}>".to_string(),
                ),
                (
                    "test:wit/i".to_string(),
                    "locked-dep=<foo:bar/i@1.2.3>".to_string(),
                ),
            ]))
            .module(&module)
            .unwrap()
            .validate(true)
            .encode()
            .unwrap();

        let wat = wasmprinter::print_bytes(encoded).unwrap();
        assert!(wat.contains("unlocked-dep=<foo:bar/foo@{>=1.0.0 <1.1.0}>"));
        assert!(wat.contains("locked-dep=<foo:bar/i@1.2.3>"));
    }
}