pub struct SlidingAggregateWindowExpr { /* private fields */ }
Expand description
A window expr that takes the form of an aggregate function
Aggregate Window Expressions that have the form
OVER({ROWS | RANGE| GROUPS} BETWEEN UNBOUNDED PRECEDING AND ...)
e.g cumulative window frames uses PlainAggregateWindowExpr
. Where as Aggregate Window Expressions
that have the form OVER({ROWS | RANGE| GROUPS} BETWEEN M {PRECEDING| FOLLOWING} AND ...)
e.g sliding window frames uses SlidingAggregateWindowExpr
.
Implementations§
source§impl SlidingAggregateWindowExpr
impl SlidingAggregateWindowExpr
sourcepub fn new(
aggregate: Arc<dyn AggregateExpr>,
partition_by: &[Arc<dyn PhysicalExpr>],
order_by: &[PhysicalSortExpr],
window_frame: Arc<WindowFrame>
) -> Self
pub fn new(
aggregate: Arc<dyn AggregateExpr>,
partition_by: &[Arc<dyn PhysicalExpr>],
order_by: &[PhysicalSortExpr],
window_frame: Arc<WindowFrame>
) -> Self
Create a new (sliding) aggregate window function expression.
sourcepub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr>
pub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr>
Get the AggregateExpr of this object.
Trait Implementations§
source§impl Debug for SlidingAggregateWindowExpr
impl Debug for SlidingAggregateWindowExpr
source§impl WindowExpr for SlidingAggregateWindowExpr
impl WindowExpr for SlidingAggregateWindowExpr
peer based evaluation based on the fact that batch is pre-sorted given the sort columns and then per partition point we’ll evaluate the peer group (e.g. SUM or MAX gives the same results for peers) and concatenate the results.
source§fn name(&self) -> &str
fn name(&self) -> &str
Human readable name such as
"MIN(c2)"
or "RANK()"
. The default
implementation returns placeholder text.source§fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> ⓘ
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> ⓘ
expressions that are passed to the WindowAccumulator.
Functions which take a single input argument, such as
sum
, return a single datafusion_expr::expr::Expr
,
others (e.g. cov
) return many.source§fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>
evaluate the window function values against the batch
source§fn evaluate_stateful(
&self,
partition_batches: &PartitionBatches,
window_agg_state: &mut PartitionWindowAggStates
) -> Result<()>
fn evaluate_stateful(
&self,
partition_batches: &PartitionBatches,
window_agg_state: &mut PartitionWindowAggStates
) -> Result<()>
Evaluate the window function against the batch. This function facilitates
stateful, bounded-memory implementations.
source§fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>]
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>]
expressions that’s from the window function’s partition by clause, empty if absent
source§fn order_by(&self) -> &[PhysicalSortExpr]
fn order_by(&self) -> &[PhysicalSortExpr]
expressions that’s from the window function’s order by clause, empty if absent
source§fn get_window_frame(&self) -> &Arc<WindowFrame>
fn get_window_frame(&self) -> &Arc<WindowFrame>
Get the window frame of this WindowExpr.
source§fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>>
fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>>
Get the reverse expression of this WindowExpr.
source§fn uses_bounded_memory(&self) -> bool
fn uses_bounded_memory(&self) -> bool
Return a flag indicating whether this WindowExpr can run with
bounded memory.
source§fn evaluate_args(&self, batch: &RecordBatch) -> Result<Vec<ArrayRef>>
fn evaluate_args(&self, batch: &RecordBatch) -> Result<Vec<ArrayRef>>
evaluate the window function arguments against the batch and return
array ref, normally the resulting vec is a single element one.
source§fn evaluate_partition_points(
&self,
num_rows: usize,
partition_columns: &[SortColumn]
) -> Result<Vec<Range<usize>>>
fn evaluate_partition_points(
&self,
num_rows: usize,
partition_columns: &[SortColumn]
) -> Result<Vec<Range<usize>>>
evaluate the partition points given the sort columns; if the sort columns are
empty then the result will be a single element vec of the whole column rows.
source§fn order_by_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>>
fn order_by_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>>
get order by columns, empty if absent
source§fn sort_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>>
fn sort_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>>
get sort columns that can be used for peer evaluation, empty if absent