pub struct LinearSet<T> { /* private fields */ }
Expand description
An implementation of a set using the underlying representation of a LinearMap where the value is ().
§Examples
use linear_map::set::LinearSet;;
// Type inference lets us omit an explicit type signature (which
// would be `LinearSet<&str>` in this example).
let mut books = LinearSet::new();
// Add some books.
books.insert("A Dance With Dragons");
books.insert("To Kill a Mockingbird");
books.insert("The Odyssey");
books.insert("The Great Gatsby");
// Check for a specific one.
if !books.contains("The Winds of Winter") {
println!("We have {} books, but The Winds of Winter ain't one.",
books.len());
}
// Remove a book.
books.remove("The Odyssey");
// Iterate over everything.
for book in &books {
println!("{}", book);
}
The easiest way to use LinearSet
with a custom type is to derive
Eq
. We must also derive PartialEq
, this will in the
future be implied by Eq
.
use linear_map::set::LinearSet;;
#[derive(Eq, PartialEq, Debug)]
struct Viking<'a> {
name: &'a str,
power: usize,
}
let mut vikings = LinearSet::new();
vikings.insert(Viking { name: "Einar", power: 9 });
vikings.insert(Viking { name: "Einar", power: 9 });
vikings.insert(Viking { name: "Olaf", power: 4 });
vikings.insert(Viking { name: "Harald", power: 8 });
// Use derived implementation to print the vikings.
for x in &vikings {
println!("{:?}", x);
}
Implementations§
Source§impl<T: Eq> LinearSet<T>
impl<T: Eq> LinearSet<T>
Sourcepub fn new() -> LinearSet<T>
pub fn new() -> LinearSet<T>
Creates an empty LinearSet.
§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::new();
Sourcepub fn with_capacity(capacity: usize) -> LinearSet<T>
pub fn with_capacity(capacity: usize) -> LinearSet<T>
Creates an empty LinearSet with space for at least n
elements in
the map.
§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::with_capacity(10);
Source§impl<T> LinearSet<T>where
T: Eq,
impl<T> LinearSet<T>where
T: Eq,
Sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
§Examples
use linear_map::set::LinearSet;;
let set: LinearSet<i32> = LinearSet::with_capacity(100);
assert!(set.capacity() >= 100);
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted
in the LinearSet
. The collection may reserve more space to avoid
frequent reallocations.
§Panics
Panics if the new allocation size overflows usize
.
§Examples
use linear_map::set::LinearSet;;
let mut set: LinearSet<i32> = LinearSet::new();
set.reserve(10);
Sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);
Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
An iterator visiting all elements in arbitrary order. Iterator element type is &’a T.
§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
set.insert("a");
set.insert("b");
// Will print in an arbitrary order.
for x in set.iter() {
println!("{}", x);
}
Sourcepub fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T> ⓘ
pub fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T> ⓘ
Visit the values representing the difference.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{}", x); // Print 1
}
let diff: LinearSet<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1].iter().cloned().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: LinearSet<_> = b.difference(&a).cloned().collect();
assert_eq!(diff, [4].iter().cloned().collect());
Sourcepub fn symmetric_difference<'a>(
&'a self,
other: &'a LinearSet<T>,
) -> SymmetricDifference<'a, T> ⓘ
pub fn symmetric_difference<'a>( &'a self, other: &'a LinearSet<T>, ) -> SymmetricDifference<'a, T> ⓘ
Visit the values representing the symmetric difference.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{}", x);
}
let diff1: LinearSet<_> = a.symmetric_difference(&b).cloned().collect();
let diff2: LinearSet<_> = b.symmetric_difference(&a).cloned().collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().cloned().collect());
Sourcepub fn intersection<'a>(
&'a self,
other: &'a LinearSet<T>,
) -> Intersection<'a, T> ⓘ
pub fn intersection<'a>( &'a self, other: &'a LinearSet<T>, ) -> Intersection<'a, T> ⓘ
Visit the values representing the intersection.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{}", x);
}
let intersection: LinearSet<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2, 3].iter().cloned().collect());
Sourcepub fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T> ⓘ
pub fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T> ⓘ
Visit the values representing the union.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect();
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{}", x);
}
let union: LinearSet<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2, 3, 4].iter().cloned().collect());
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use linear_map::set::LinearSet;;
let mut v = LinearSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the set contains no elements.
§Examples
use linear_map::set::LinearSet;;
let mut v = LinearSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());
Sourcepub fn drain(&mut self) -> Drain<'_, T> ⓘ
pub fn drain(&mut self) -> Drain<'_, T> ⓘ
Clears the set, returning all elements in an iterator.
Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clears the set, removing all values.
§Examples
use linear_map::set::LinearSet;;
let mut v = LinearSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns false
.
Sourcepub fn contains<Q>(&self, value: &Q) -> bool
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true
if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Eq
on the borrowed form must match those for
the value type.
§Examples
use linear_map::set::LinearSet;;
let set: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
Sourcepub fn is_disjoint(&self, other: &LinearSet<T>) -> bool
pub fn is_disjoint(&self, other: &LinearSet<T>) -> bool
Returns true
if the set has no elements in common with other
.
This is equivalent to checking for an empty intersection.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = LinearSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
Sourcepub fn is_subset(&self, other: &LinearSet<T>) -> bool
pub fn is_subset(&self, other: &LinearSet<T>) -> bool
Returns true
if the set is a subset of another.
§Examples
use linear_map::set::LinearSet;;
let sup: LinearSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = LinearSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
Sourcepub fn is_superset(&self, other: &LinearSet<T>) -> bool
pub fn is_superset(&self, other: &LinearSet<T>) -> bool
Returns true
if the set is a superset of another.
§Examples
use linear_map::set::LinearSet;;
let sub: LinearSet<_> = [1, 2].iter().cloned().collect();
let mut set = LinearSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);
Sourcepub fn insert(&mut self, value: T) -> bool
pub fn insert(&mut self, value: T) -> bool
Adds a value to the set.
If the set did not have a value present, true
is returned.
If the set did have this key present, false
is returned.
§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
Sourcepub fn remove<Q>(&mut self, value: &Q) -> bool
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns true
if the value was
present in the set.
The value may be any borrowed form of the set’s value type, but
Eq
on the borrowed form must match those for
the value type.
§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
Trait Implementations§
Source§impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T>
impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T>
Source§fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T>
fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T>
Returns the intersection of self
and rhs
as a new LinearSet<T>
.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![2, 3, 4].into_iter().collect();
let set = &a & &b;
let mut i = 0;
let expected = [2, 3];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
Source§impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T>
impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T>
Source§fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T>
fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T>
Returns the union of self
and rhs
as a new LinearSet<T>
.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
let set = &a | &b;
let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
Source§impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T>
impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T>
Source§fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T>
fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T>
Returns the symmetric difference of self
and rhs
as a new LinearSet<T>
.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
let set = &a ^ &b;
let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
Source§impl<'a, T> Extend<&'a T> for LinearSet<T>
impl<'a, T> Extend<&'a T> for LinearSet<T>
Source§fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> Extend<T> for LinearSet<T>where
T: Eq,
impl<T> Extend<T> for LinearSet<T>where
T: Eq,
Source§fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T> FromIterator<T> for LinearSet<T>where
T: Eq,
impl<T> FromIterator<T> for LinearSet<T>where
T: Eq,
Source§impl<'a, T> IntoIterator for &'a LinearSet<T>where
T: Eq,
impl<'a, T> IntoIterator for &'a LinearSet<T>where
T: Eq,
Source§impl<T> IntoIterator for LinearSet<T>where
T: Eq,
impl<T> IntoIterator for LinearSet<T>where
T: Eq,
Source§fn into_iter(self) -> IntoIter<T> ⓘ
fn into_iter(self) -> IntoIter<T> ⓘ
Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.
§Examples
use linear_map::set::LinearSet;;
let mut set = LinearSet::new();
set.insert("a".to_string());
set.insert("b".to_string());
// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();
// Will print in an arbitrary order.
for x in &v {
println!("{}", x);
}
Source§impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T>
impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T>
Source§fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T>
fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T>
Returns the difference of self
and rhs
as a new LinearSet<T>
.
§Examples
use linear_map::set::LinearSet;;
let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect();
let set = &a - &b;
let mut i = 0;
let expected = [1, 2];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
impl<T> Eq for LinearSet<T>where
T: Eq,
Auto Trait Implementations§
impl<T> Freeze for LinearSet<T>
impl<T> RefUnwindSafe for LinearSet<T>where
T: RefUnwindSafe,
impl<T> Send for LinearSet<T>where
T: Send,
impl<T> Sync for LinearSet<T>where
T: Sync,
impl<T> Unpin for LinearSet<T>where
T: Unpin,
impl<T> UnwindSafe for LinearSet<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)