Trait malachite_base::num::arithmetic::traits::CeilingDivAssignNegMod
source · pub trait CeilingDivAssignNegMod<RHS = Self> {
type ModOutput;
// Required method
fn ceiling_div_assign_neg_mod(&mut self, other: RHS) -> Self::ModOutput;
}
Expand description
Divides a number by another number in place, taking the ceiling of the quotient and returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
Required Associated Types§
Required Methods§
fn ceiling_div_assign_neg_mod(&mut self, other: RHS) -> Self::ModOutput
Implementations on Foreign Types§
source§impl CeilingDivAssignNegMod for u8
impl CeilingDivAssignNegMod for u8
source§fn ceiling_div_assign_neg_mod(&mut self, other: u8) -> u8
fn ceiling_div_assign_neg_mod(&mut self, other: u8) -> u8
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.
type ModOutput = u8
source§impl CeilingDivAssignNegMod for u16
impl CeilingDivAssignNegMod for u16
source§fn ceiling_div_assign_neg_mod(&mut self, other: u16) -> u16
fn ceiling_div_assign_neg_mod(&mut self, other: u16) -> u16
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.
type ModOutput = u16
source§impl CeilingDivAssignNegMod for u32
impl CeilingDivAssignNegMod for u32
source§fn ceiling_div_assign_neg_mod(&mut self, other: u32) -> u32
fn ceiling_div_assign_neg_mod(&mut self, other: u32) -> u32
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.
type ModOutput = u32
source§impl CeilingDivAssignNegMod for u64
impl CeilingDivAssignNegMod for u64
source§fn ceiling_div_assign_neg_mod(&mut self, other: u64) -> u64
fn ceiling_div_assign_neg_mod(&mut self, other: u64) -> u64
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.
type ModOutput = u64
source§impl CeilingDivAssignNegMod for u128
impl CeilingDivAssignNegMod for u128
source§fn ceiling_div_assign_neg_mod(&mut self, other: u128) -> u128
fn ceiling_div_assign_neg_mod(&mut self, other: u128) -> u128
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.
type ModOutput = u128
source§impl CeilingDivAssignNegMod for usize
impl CeilingDivAssignNegMod for usize
source§fn ceiling_div_assign_neg_mod(&mut self, other: usize) -> usize
fn ceiling_div_assign_neg_mod(&mut self, other: usize) -> usize
Divides a number by another number in place, returning the remainder of the negative of the first number divided by the second.
The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
$$ f(x, y) = y\left \lceil \frac{x}{y} \right \rceil - x, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
Constant time and additional memory.
§Panics
Panics if other
is 0.
§Examples
See here.