pub trait EqModPowerOf2<RHS = Self> {
// Required method
fn eq_mod_power_of_2(self, other: RHS, pow: u64) -> bool;
}
Expand description
Determines whether a number is equivalent to another number modulo $2^k$.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
Returns whether one number is equal to another modulo $2^k$.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.