Trait malachite_base::num::arithmetic::traits::ModPowerOf2Pow

source ·
pub trait ModPowerOf2Pow<RHS = Self> {
    type Output;

    // Required method
    fn mod_power_of_2_pow(self, exp: RHS, pow: u64) -> Self::Output;
}
Expand description

Raises a number to a power modulo $2^k$. The base must be already reduced modulo $2^k$.

Required Associated Types§

Required Methods§

source

fn mod_power_of_2_pow(self, exp: RHS, pow: u64) -> Self::Output

Implementations on Foreign Types§

source§

impl ModPowerOf2Pow for u64

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u64

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = u64

source§

impl ModPowerOf2Pow<u64> for u8

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u8

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = u8

source§

impl ModPowerOf2Pow<u64> for u16

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u16

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = u16

source§

impl ModPowerOf2Pow<u64> for u32

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u32

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = u32

source§

impl ModPowerOf2Pow<u64> for u128

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u128

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = u128

source§

impl ModPowerOf2Pow<u64> for usize

source§

fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> usize

Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.

$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.

§Worst-case complexity

$T(n) = O(n)$

$M(n) = O(1)$

where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits().

§Panics

Panics if pow is greater than Self::WIDTH or if self is greater than or equal to $2^k$.

§Examples

See here.

source§

type Output = usize

Implementors§