Trait malachite_base::num::arithmetic::traits::ModPowerOf2Pow
source · pub trait ModPowerOf2Pow<RHS = Self> {
type Output;
// Required method
fn mod_power_of_2_pow(self, exp: RHS, pow: u64) -> Self::Output;
}
Expand description
Raises a number to a power modulo $2^k$. The base must be already reduced modulo $2^k$.
Required Associated Types§
Required Methods§
fn mod_power_of_2_pow(self, exp: RHS, pow: u64) -> Self::Output
Implementations on Foreign Types§
source§impl ModPowerOf2Pow for u64
impl ModPowerOf2Pow for u64
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u64
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u64
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
type Output = u64
source§impl ModPowerOf2Pow<u64> for u8
impl ModPowerOf2Pow<u64> for u8
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u8
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u8
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
type Output = u8
source§impl ModPowerOf2Pow<u64> for u16
impl ModPowerOf2Pow<u64> for u16
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u16
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u16
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
type Output = u16
source§impl ModPowerOf2Pow<u64> for u32
impl ModPowerOf2Pow<u64> for u32
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u32
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u32
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
type Output = u32
source§impl ModPowerOf2Pow<u64> for u128
impl ModPowerOf2Pow<u64> for u128
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u128
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> u128
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
type Output = u128
source§impl ModPowerOf2Pow<u64> for usize
impl ModPowerOf2Pow<u64> for usize
source§fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> usize
fn mod_power_of_2_pow(self, exp: u64, pow: u64) -> usize
Raises a number to a power modulo another number $2^k$. The base must be already reduced modulo $2^k$.
$f(x, n, k) = y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.