Trait malachite_base::num::arithmetic::traits::ModPowerOf2PowAssign
source · pub trait ModPowerOf2PowAssign<RHS = Self> {
// Required method
fn mod_power_of_2_pow_assign(&mut self, exp: RHS, pow: u64);
}
Expand description
Raises a number to a power modulo $2^k$, in place. The base must be already reduced modulo $2^k$.
Required Methods§
fn mod_power_of_2_pow_assign(&mut self, exp: RHS, pow: u64)
Implementations on Foreign Types§
source§impl ModPowerOf2PowAssign for u64
impl ModPowerOf2PowAssign for u64
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
source§impl ModPowerOf2PowAssign<u64> for u8
impl ModPowerOf2PowAssign<u64> for u8
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
source§impl ModPowerOf2PowAssign<u64> for u16
impl ModPowerOf2PowAssign<u64> for u16
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
source§impl ModPowerOf2PowAssign<u64> for u32
impl ModPowerOf2PowAssign<u64> for u32
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
source§impl ModPowerOf2PowAssign<u64> for u128
impl ModPowerOf2PowAssign<u64> for u128
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.
source§impl ModPowerOf2PowAssign<u64> for usize
impl ModPowerOf2PowAssign<u64> for usize
source§fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
fn mod_power_of_2_pow_assign(&mut self, exp: u64, pow: u64)
Raises a number to a power modulo another number $2^k$, in place. The base must be already reduced modulo $2^k$.
$x \gets y$, where $x, y < 2^k$ and $x^n \equiv y \mod 2^k$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Panics
Panics if pow
is greater than Self::WIDTH
or if self
is greater than or equal
to $2^k$.
§Examples
See here.