Trait malachite_base::num::arithmetic::traits::RoundToMultiple

source ·
pub trait RoundToMultiple<RHS = Self> {
    type Output;

    // Required method
    fn round_to_multiple(
        self,
        other: RHS,
        rm: RoundingMode,
    ) -> (Self::Output, Ordering);
}
Expand description

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

Required Associated Types§

Required Methods§

source

fn round_to_multiple( self, other: RHS, rm: RoundingMode, ) -> (Self::Output, Ordering)

Implementations on Foreign Types§

source§

impl RoundToMultiple for i8

source§

fn round_to_multiple(self, other: i8, rm: RoundingMode) -> (i8, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = i8

source§

impl RoundToMultiple for i16

source§

fn round_to_multiple(self, other: i16, rm: RoundingMode) -> (i16, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = i16

source§

impl RoundToMultiple for i32

source§

fn round_to_multiple(self, other: i32, rm: RoundingMode) -> (i32, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = i32

source§

impl RoundToMultiple for i64

source§

fn round_to_multiple(self, other: i64, rm: RoundingMode) -> (i64, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = i64

source§

impl RoundToMultiple for i128

source§

fn round_to_multiple(self, other: i128, rm: RoundingMode) -> (i128, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = i128

source§

impl RoundToMultiple for isize

source§

fn round_to_multiple(self, other: isize, rm: RoundingMode) -> (isize, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding mode that is guaranteed to return without a panic is Down.

Let $q = \frac{x}{|y|}$:

$f(x, y, \mathrm{Down}) = \operatorname{sgn}(q) |y| \lfloor |q| \rfloor.$

$f(x, y, \mathrm{Up}) = \operatorname{sgn}(q) |y| \lceil |q| \rceil.$

$f(x, y, \mathrm{Floor}) = |y| \lfloor q \rfloor.$

$f(x, y, \mathrm{Ceiling}) = |y| \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = isize

source§

impl RoundToMultiple for u8

source§

fn round_to_multiple(self, other: u8, rm: RoundingMode) -> (u8, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = u8

source§

impl RoundToMultiple for u16

source§

fn round_to_multiple(self, other: u16, rm: RoundingMode) -> (u16, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = u16

source§

impl RoundToMultiple for u32

source§

fn round_to_multiple(self, other: u32, rm: RoundingMode) -> (u32, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = u32

source§

impl RoundToMultiple for u64

source§

fn round_to_multiple(self, other: u64, rm: RoundingMode) -> (u64, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = u64

source§

impl RoundToMultiple for u128

source§

fn round_to_multiple(self, other: u128, rm: RoundingMode) -> (u128, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = u128

source§

impl RoundToMultiple for usize

source§

fn round_to_multiple(self, other: usize, rm: RoundingMode) -> (usize, Ordering)

Rounds a number to a multiple of another number, according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the original value.

The only rounding modes that are guaranteed to return without a panic are Down and Floor.

Let $q = \frac{x}{y}$:

$f(x, y, \mathrm{Down}) = f(x, y, \mathrm{Floor}) = y \lfloor q \rfloor.$

$f(x, y, \mathrm{Up}) = f(x, y, \mathrm{Ceiling}) = y \lceil q \rceil.$

$$ f(x, y, \mathrm{Nearest}) = \begin{cases} y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2} \\ y \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even} \\ y \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$f(x, y, \mathrm{Exact}) = x$, but panics if $q \notin \N$.

The following two expressions are equivalent:

  • x.round_to_multiple(other, Exact)
  • { assert!(x.divisible_by(other)); x }

but the latter should be used as it is clearer and more efficient.

§Worst-case complexity

Constant time and additional memory.

§Panics
  • If rm is Exact, but self is not a multiple of other.
  • If the multiple is outside the representable range.
  • If self is nonzero, other is zero, and rm is trying to round away from zero.
§Examples

See here.

source§

type Output = usize

Implementors§