Trait malachite_base::num::arithmetic::traits::SaturatingMulAssign
source · pub trait SaturatingMulAssign<RHS = Self> {
// Required method
fn saturating_mul_assign(&mut self, other: RHS);
}
Expand description
Multiplies a number by another number in place, saturating at the numeric bounds instead of overflowing.
Required Methods§
fn saturating_mul_assign(&mut self, other: RHS)
Implementations on Foreign Types§
source§impl SaturatingMulAssign for i8
impl SaturatingMulAssign for i8
source§fn saturating_mul_assign(&mut self, other: i8)
fn saturating_mul_assign(&mut self, other: i8)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for i16
impl SaturatingMulAssign for i16
source§fn saturating_mul_assign(&mut self, other: i16)
fn saturating_mul_assign(&mut self, other: i16)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for i32
impl SaturatingMulAssign for i32
source§fn saturating_mul_assign(&mut self, other: i32)
fn saturating_mul_assign(&mut self, other: i32)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for i64
impl SaturatingMulAssign for i64
source§fn saturating_mul_assign(&mut self, other: i64)
fn saturating_mul_assign(&mut self, other: i64)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for i128
impl SaturatingMulAssign for i128
source§fn saturating_mul_assign(&mut self, other: i128)
fn saturating_mul_assign(&mut self, other: i128)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for isize
impl SaturatingMulAssign for isize
source§fn saturating_mul_assign(&mut self, other: isize)
fn saturating_mul_assign(&mut self, other: isize)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for u8
impl SaturatingMulAssign for u8
source§fn saturating_mul_assign(&mut self, other: u8)
fn saturating_mul_assign(&mut self, other: u8)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for u16
impl SaturatingMulAssign for u16
source§fn saturating_mul_assign(&mut self, other: u16)
fn saturating_mul_assign(&mut self, other: u16)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for u32
impl SaturatingMulAssign for u32
source§fn saturating_mul_assign(&mut self, other: u32)
fn saturating_mul_assign(&mut self, other: u32)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for u64
impl SaturatingMulAssign for u64
source§fn saturating_mul_assign(&mut self, other: u64)
fn saturating_mul_assign(&mut self, other: u64)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for u128
impl SaturatingMulAssign for u128
source§fn saturating_mul_assign(&mut self, other: u128)
fn saturating_mul_assign(&mut self, other: u128)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingMulAssign for usize
impl SaturatingMulAssign for usize
source§fn saturating_mul_assign(&mut self, other: usize)
fn saturating_mul_assign(&mut self, other: usize)
Multiplies a number by another number, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
xy & \text{if} \quad m \leq xy \leq M, \\
M & \text{if} \quad xy > M, \\
m & \text{if} \quad xy < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.