Trait malachite_base::num::arithmetic::traits::SaturatingPowAssign
source · pub trait SaturatingPowAssign<RHS = Self> {
// Required method
fn saturating_pow_assign(&mut self, exp: RHS);
}
Expand description
Raises a number to a power in place, saturating at the numeric bounds instead of overflowing.
Required Methods§
fn saturating_pow_assign(&mut self, exp: RHS)
Implementations on Foreign Types§
source§impl SaturatingPowAssign for u64
impl SaturatingPowAssign for u64
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for i8
impl SaturatingPowAssign<u64> for i8
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for i16
impl SaturatingPowAssign<u64> for i16
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for i32
impl SaturatingPowAssign<u64> for i32
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for i64
impl SaturatingPowAssign<u64> for i64
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for i128
impl SaturatingPowAssign<u64> for i128
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for isize
impl SaturatingPowAssign<u64> for isize
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for u8
impl SaturatingPowAssign<u64> for u8
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for u16
impl SaturatingPowAssign<u64> for u16
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for u32
impl SaturatingPowAssign<u64> for u32
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for u128
impl SaturatingPowAssign<u64> for u128
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingPowAssign<u64> for usize
impl SaturatingPowAssign<u64> for usize
source§fn saturating_pow_assign(&mut self, exp: u64)
fn saturating_pow_assign(&mut self, exp: u64)
Raises a number to a power, in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x^y & \text{if} \quad m \leq x^y \leq M, \\
M & \text{if} \quad x^y > M, \\
m & \text{if} \quad x^y < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.